Cho hình bình hành ABCD. Một điểm M nằm trên đường chéo AC, đường thẳng BM cắt DC tại E và cắt AD tại F. Chứng minh MB^2 = ME.MF
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 5 2020
Vào thống kê hỏi đáp là thấy hình :)
a,
\(\frac{MF}{MB}=\frac{AF}{BC}=\frac{AD-DF}{BC}\)
\(=1-\frac{ED}{EC}=\frac{EC-ED}{EC}=\frac{DC}{EC}=\frac{AB}{EC}=\frac{MB}{ME}\)
\(\Rightarrow MB^2=MF.ME\)
b,
\(\frac{1}{BE}+\frac{1}{BF}=\frac{1}{BM}\Leftarrow BM\left(BE+BF\right)=BE.BF\Leftarrow BM.BF=BE.\left(BF-BM\right)=BE.BF\Leftarrow\frac{BE}{BM}\)
\(=\frac{BF}{MF}\Leftarrow\frac{ME}{MB}=\frac{MB}{MF}\)
Nguồn : gg