K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

(m-1)x+2m<0(1)

đặt f(x)=(m-1)x+2m

để BPT (1) nghiệm đúng ∀x∈[0;2] <=>

\(\left\{{}\begin{matrix}m-1< 0\\f\left(x\right)=0,\left(\forall x< 0\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left(m-1\right)x+2m=0,\left(\forall x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\x=\dfrac{2m}{1-m},\forall x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\dfrac{2m}{1-m}< 0\end{matrix}\right.\)

17 tháng 5 2021

Đặt \(f\left(x,m\right)=\left(m^2+1\right)x^2+\left(2m+1\right)x-5\)

\(ycbt\Leftrightarrow\hept{\begin{cases}f\left(-1,m\right)\le0\\f\left(1,m\right)\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2-2m-5\le0\\m^2+2m-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}1-\sqrt{6}\le m\le1+\sqrt{6}\\-3\le m\le1\end{cases}}\)

\(\Leftrightarrow1-\sqrt{6}\le m\le1\)

19 tháng 5 2021

Đặt ƒ (x,m)=(m2+1)x2+(2m+1)x−5

ycbt⇔{

ƒ (−1,m)≤0
ƒ (1,m)≤0

⇔{

m2−2m−5≤0
m2+2m−3≤0

⇔{

1−√6≤m≤1+√6
−3≤m≤1

⇔1−√6≤m≤1

31 tháng 1 2020

\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)

Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)

\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0

NV
15 tháng 1 2021

- Với \(m=2\) BPT luôn có nghiệm

- Với \(m\ne2\) BPT vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m+1\right)^2-2m\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-m^2+6m+1\le0\end{matrix}\right.\)

\(\Rightarrow m\le3-\sqrt{10}\)

10 tháng 3 2022

\(f\left(x\right)=\left(3m-4\right)x^2-2\left(m-2\right)x+m-1< 0\)

\(TH1:3m-4=0\Leftrightarrow m=\dfrac{4}{3}\Rightarrow f\left(x\right)=\dfrac{4}{3}x+\dfrac{1}{3}< 0\Leftrightarrow x< -\dfrac{1}{4}\left(ktm\right)\)

\(TH2:3m-4>0\Leftrightarrow m>\dfrac{4}{3}\Rightarrow f\left(x\right)< 0\forall x>1\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x1\le1< x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m-1\right)\left(3m-4\right)>0\\\left(x1-1\right)\left(x2-1\right)\le0\Leftrightarrow x1.x2-\left(x1+x2\right)+1\le0\\\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-4}+1\le0\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\left(màm>\dfrac{4}{3}\right)\Rightarrow loại\)

\(TH3:3m-4< 0\Leftrightarrow m< \dfrac{4}{3}\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\Delta'=0\Leftrightarrow m=0\left(tm\right)\\x=\dfrac{2\left(m-2\right)}{3m-4}=\dfrac{1}{2}\notin\left(1;+\infty\right)\left(tm\right)\end{matrix}\right.\\\Delta'< 0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{2}\end{matrix}\right.\\x1< x2\le1\left(1\right)\\\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\Leftrightarrow0< m< \dfrac{3}{2}\\\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-2}+1\ge0\\\dfrac{2\left(m-2\right)}{3m-4}-2< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m\le\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}m\le0\\0< m\le\dfrac{1}{2}\end{matrix}\right.\)

 

11 tháng 3 2022

thay \(\dfrac{1}{2}\) vào ra x<1/5 hoặc x>1 chứ có phải Vx>1 đâu ạ

 

NV
29 tháng 7 2021

- Với \(m=\dfrac{1}{2}\) ko thỏa mãn

- Với \(m\ne\dfrac{1}{2}\)

\(\Leftrightarrow\left(2m-1\right)x^3-\left(2m-1\right)x^2-\left(m-2\right)x^2+\left(m-4\right)x+2\ge0\)

\(\Leftrightarrow\left(2m-1\right)x^2\left(x-1\right)-\left(x-1\right)\left[\left(m-2\right)x+2\right]\ge0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2m-1\right)x^2-\left(m-2\right)x-2\right]\ge0\) (1)

Do (1) luôn chứa 1 nghiệm \(x=1\in\left(0;+\infty\right)\) nên để bài toán thỏa mãn thì cần 2 điều sau đồng thời xảy ra:

+/ \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)

+/ \(\left(2m-1\right)x^2-\left(m-2\right)x-2=0\) có 2 nghiệm trong đó \(x_1\le0\) và \(x_2=1\)

Thay \(x=1\) vào ta được:

\(\left(2m-1\right)-\left(m-2\right)-2=0\Leftrightarrow m=1\)

Khi đó: \(x^2+x-2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x_1=-2< 0\left(thỏa\right)\\x_2=1\end{matrix}\right.\)

Vậy \(m=1\)