Cho 3 số hữu tỉ \(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{x-y}\).CMR: tổng bình phương của 3 số đã cho là bình phương số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
\(\Rightarrow2ab\text{=}2bc+2ca\)
\(\Rightarrow2ab-2bc-2ca\text{=}0\)
Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)
\(\text{=}a^2+b^2+c^2\)
Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)
\(\Rightarrow A\text{=}a+b-c\)
Vì a;b;c là các số hữu tỉ suy ra : đpcm
b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)
Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
Từ đây ta thấy giống phần a nên :
\(B\text{=}a+b-c\)
\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)
Suy ra : đpcm.
Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.
Ta có: \(x+y=z\Rightarrow x=z-y\)
\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{x^2y^2+y^2z^2+x^2z^2}{x^2y^2z^2}}\)
\(=\sqrt{\dfrac{\left(z-y\right)^2y^2+y^2z^2+\left(z-y\right)^2z^2}{x^2y^2z^2}}\)
\(=\sqrt{\dfrac{y^4+y^2z^2-2y^3z+y^2z^2+z^4+y^2z^2-2yz^3}{x^2y^2z^2}}\)
\(=\sqrt{\dfrac{\left(y^4+2y^2z^2+z^4\right)-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)
\(=\sqrt{\dfrac{\left(y^2+z^2\right)^2-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)
\(=\sqrt{\dfrac{\left(y^2+z^2-yz\right)^2}{x^2y^2z^2}}=\left|\dfrac{y^2+z^2-yz}{xyz}\right|\)
Là một số hữu tỉ do x,y,z là số hữu tỉ
Bài 2:
a: =>11/13-5/42+x=15/18+11/13
=>x-5/42=15/18
=>x=5/6+5/42=35/42+5/42=40/42=20/21
b: 2x-3=x+1/2
=>2x-x=3+1/2
=>x=7/2
Bài 1:
a, Ta có:
\(\dfrac{-8}{15}=-\dfrac{5}{18}+-\dfrac{1}{6}\)
b, Ta có:
\(-\dfrac{8}{15}=\dfrac{11}{15}-\dfrac{19}{15}\)
Bài 2:
a, \(\dfrac{11}{13}-\left(\dfrac{5}{12}-x\right)=-\left(\dfrac{15}{18}-\dfrac{11}{13}\right)\)
\(\Rightarrow\dfrac{11}{13}-\dfrac{5}{12}+x=-\dfrac{15}{18}+\dfrac{11}{13}\)
\(\Rightarrow x=-\dfrac{15}{18}+\dfrac{11}{13}+\dfrac{5}{12}-\dfrac{11}{13}\)
\(\Rightarrow x=-\dfrac{15}{8}+\dfrac{5}{12}=-\dfrac{35}{24}\)
b, \(2x-3=x+\dfrac{1}{2}\)
\(\Rightarrow2x-x=\dfrac{1}{2}+3\Rightarrow x=\dfrac{7}{2}\)
Chúc bạn học tốt!!!
1: Để \(\dfrac{-5}{x-1}< 0\) thì x-1>0
hay x>1
2: Để \(\dfrac{7}{x-6}>0\) thì x-6>0
hay x>6
3: Để \(\dfrac{-3}{x-6}< 0\) thì x-6<0
hay x<6
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
\(\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{b}\Leftrightarrow ab=bc+ac\Leftrightarrow2ab-2bc-2ac=0\\ \Leftrightarrow\sqrt{a^2+b^2+c^2}=\sqrt{a^2+b^2+c^2+2ab-2bc-2ac}\\ =\sqrt{\left(a+b-c\right)^2}=\left|a+b-c\right|\left(dpcm\right)\)