|x+5|+|y-2|\(\le\)4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
TH1: |x+1|=1 và |y-2|=1
=>5|x+1|=5 và |y-2|=2
=>|x+1|=1 và |y-2|=2
=>\(\left\{{}\begin{matrix}x+1\in\left\{1;-1\right\}\\y-2\in\left\{2;-2\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-2\right\}\\y\in\left\{4;0\right\}\end{matrix}\right.\)
TH2: |x+1|=0 và |y-2|=7
=>y-2=7 hoặc y-2=-7 và x=-1
=>y=7 hoặc y=-5 và x=-1
b: TH1:
4|2x+5|=4 và |y+3|=1
=>|2x+5|=1 và |y+3|=1
=>\(\left\{{}\begin{matrix}2x+5\in\left\{1;-1\right\}\\y+3\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-2;-3\right\}\\y\in\left\{-2;-4\right\}\end{matrix}\right.\)
TH2: |2x+5|=0 và |y+3|=5
=>2x+5=0 và |y+3|=5
=>\(\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y\in\left\{2;-8\right\}\end{matrix}\right.\)
a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)
b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)
\("="\Leftrightarrow x=3\)
c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow x=-\frac{1}{4}\)
d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)
\("="\Leftrightarrow x=\frac{5}{4}\)
e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)
\("="\Leftrightarrow x=1\)
f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)
\("="\Leftrightarrow x=\sqrt{2}\)
g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)
\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Tương tự \(y^2+2\le3y\)
Do đó:
\(P=\frac{x+2y}{x^2+2+3y+3}+\frac{2x+y}{y^2+2+3x+3}+\frac{1}{4\left(x+y-1\right)}\ge\frac{x+2y}{3x+3y+3}+\frac{2x+y}{3x+3y+3}+\frac{1}{4\left(x+y-1\right)}\)
\(P\ge\frac{3x+3y}{3x+3y+3}+\frac{1}{4\left(x+y-1\right)}=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\)
Đặt \(x+y=t\Rightarrow2\le t\le4\)
\(\Rightarrow P\ge\frac{t}{t+1}+\frac{1}{4t-4}=\frac{t}{t+1}+\frac{1}{4t-4}-\frac{7}{8}+\frac{7}{8}\)
\(P\ge\frac{\left(t-3\right)^2}{8\left(t^2-1\right)}+\frac{7}{8}\ge\frac{7}{8}\)
\(P_{min}=\frac{7}{8}\) khi \(t=3\) hay \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
CON NGU