CMR:1/1^2 + 1/2^2 + 1/3^2 + ... + 1/n^2 < 5/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^2>a^2-1\forall a\)
\(\Rightarrow a^2>\left(a-1\right)\left(a+1\right)\)
\(\Rightarrow\dfrac{1}{a^2}< \dfrac{1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{2}\cdot\left(\dfrac{1}{a-1}\right)\left(\dfrac{1}{a+1}\right)\)
Áp dụng, ta có
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1+\dfrac{1}{2^2}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
= \(1+\dfrac{1}{2^2}+\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
= 1+ \(\dfrac{1}{4}\)+\(\dfrac{1}{2}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
=1+ \(\dfrac{2}{3}-\dfrac{1}{2}\cdot\left(\dfrac{1}{n}+\dfrac{1}{n+1}\right)\) < \(1+\dfrac{2}{3}=\dfrac{5}{3}\left(ĐPCM\right)\)
(Mik mượn chỗ bình luận ké nha!!)
Người Ấy Là Ai-eqt đẹp đó :)
Tham khảo nè:
1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 2/3 chứng minh
k² > k² - 1 = (k-1)(k+1)
⇒ 1/k² < 1/[(k-1).(k+1)] = [1/(k-1) - 1/(k+1)]/2 (*)
Áp dụng (*), ta có:
1/2² + 1/3² + 1/4² + ... + 1/n²
< 1/2² + 1/(2.4) + 1/(3.5) + ... + 1/[(n-1).(n+1)]
= 1/2² + [1/2 - 1/4 + 1/3 - 1/5 + ... + 1/(n-1) - 1/(n+1)]/2
= 1/2² + [1/2 + 1/3 - 1/n - 1/(n+1)]/2
= 2/3 - [1/n + 1/(n+1)]/2 < 2/3
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé