Thực hiện phép tính :
\(\frac{1}{\sqrt{2}+1}-\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=...
ta có
A=\(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
Ta có:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-1\)
Lại có:
\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)
Do đó:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(\Leftrightarrow\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+....+\sqrt{99}-\sqrt{100}\)
\(\Leftrightarrow\sqrt{100}-1=10-1=9\)
\(\left(\sqrt{4,5}-\frac{1}{2}.\sqrt{72}+5\sqrt{\frac{1}{2}}\right).\left(42\sqrt{\frac{25}{6}}-10\sqrt{\frac{3}{2}}-12\sqrt{\frac{98}{3}}\right)\)
=\(\left(\frac{3\sqrt{2}}{2}-3\sqrt{2}+\frac{5\sqrt{2}}{2}\right).\left(35\sqrt{6}-5\sqrt{6}-28\sqrt{6}\right)\)
=\(\left(\frac{3\sqrt{2}-6\sqrt{2}+5\sqrt{2}}{2}\right).2\sqrt{6}\)
=\(2\sqrt{2}.\sqrt{6}=4\sqrt{3}\)
Đặt: \(A=\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\)
=> \(A^2=\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
=> \(A^2=2\sqrt{5}+2\sqrt{5-4}\)
=> \(A^2=2\sqrt{5}+2\)
=> \(A^2=2\left(\sqrt{5}+1\right)\)
=> \(A=\sqrt{2\left(\sqrt{5}+1\right)}\)
=> \(\frac{A}{\sqrt{\sqrt{5}+1}}=\frac{\sqrt{2\left(\sqrt{5}+1\right)}}{\sqrt{\sqrt{5}+1}}=\sqrt{2}\)
Đặt: \(B=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
=> \(VT=\frac{A}{\sqrt{\sqrt{5}+1}}-B=\sqrt{2}-\left(\sqrt{2}-1\right)=\sqrt{2}-\sqrt{2}+1=1\)
VẬY KẾT QUẢ CỦA PHÉP TÍNH = 1.
Ta có \(\sqrt{1+\frac{\sqrt{3}}{2}}+\frac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}\)
\(=\sqrt{\frac{2+\sqrt{3}}{2}}+\frac{\sqrt{8-\sqrt{15}}\left(\sqrt{30}+\sqrt{2}\right)}{\left(\sqrt{30}+\sqrt{2}\right)\left(\sqrt{30}-\sqrt{2}\right)}\)
=\(\frac{\sqrt{2+\sqrt{3}}\sqrt{2}}{2}+\frac{\sqrt{240-30\sqrt{15}}+\sqrt{16-2\sqrt{15}}}{30-2}\)
\(=\frac{\sqrt{4+2\sqrt{3}}}{2}+\frac{\sqrt{\left(15-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-1\right)^2}}{28}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}+\frac{\left(15-\sqrt{15}\right)+\left(\sqrt{15}-1\right)}{28}\)
\(=\frac{\sqrt{3}+1}{2}+\frac{14}{28}\)
\(=\frac{\sqrt{3}+1}{2}+\frac{1}{2}\)
\(=\frac{\sqrt{3}+2}{2}\)
\(\frac{1}{\sqrt{2}+1}-\sqrt{2}=\frac{1-\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=\frac{1-2-\sqrt{2}}{\sqrt{2}+1}\)
\(=\frac{-1-\sqrt{2}}{\sqrt{2}+1}=\frac{-1\left(1+\sqrt{2}\right)}{\sqrt{2}+1}=-1\)