phân tích đa thức thành nhân tử:
\(K=12-8x^2-x+x^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-8x+12=\left(x^2-6x\right)-\left(2x-12\right)=x\left(x-6\right)-2\left(x-6\right)=\left(x-2\right)\left(x-6\right)\)
= \(x^4-2x^3-6x^3+12x^2-x^2+2x+6x-12\)
= \(x^3\left(x-2\right)-6x^2\left(x-2\right)-x\left(x-2\right)+6\left(x-2\right)\)
= \(\left(x-2\right)\left(x^3-6x^2-x+6\right)\)
= \(\left(x-2\right)\left(x^2\left(x-6\right)-\left(x-6\right)\right)\)
= \(\left(x-2\right)\left(x-6\right)\left(x-1\right)\left(x+1\right)\)
x4 - 8x3 + 11x2 + 8x - 12
= (x3 - 7x2 + 4x + 12)(x - 1)
= (x3 - 8x + 12)(x + 1)(x - 1)
= (x - 6)(x - 2)(x + 1)(x - 1)
\(\Leftrightarrow x^3-2x^2+x^2-2x-6x+12\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x-6\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-2x-6\right)\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2\left(x+3\right)\)
T I C K ủng hộ nha
_________________CHÚC BẠN HỌC TỐT ___________________
\(=x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\\ =\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)