K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

Không 

Vì Nếu n là số không chia hết cho 9 thì 8n không chia hết cho 9 

Và 8n+abcd không chia hết cho 9

Bài 2:

a: \(A=2\left(2n+3\right)\left(5n+7\right)⋮2\)

b: Vì 8n+1 là số lẻ

và 6n+5 là số lẻ

nên (8n+1)(6n+5) không chia hết cho 2

1 tháng 2 2019

a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5

2n - 16 luôn luôn chia hết cho 2n - 16 

=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16

=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }

Tự làm nốt

b, tương tự 

c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8

... Tiếp tục :))

1 tháng 2 2019

a ,\(8n-59⋮2n-16\)

Mà \(2n-16⋮2n-16\) 

\(\Rightarrow4\left(2n-16\right)⋮2n-16\)

\(\Rightarrow8n-64⋮2n-16\) 

\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\) 

\(\Rightarrow8n-59-8n+64⋮2n-16\) 

\(\Rightarrow5⋮2n-16\) 

\(\Rightarrow2n-16\inƯ\left(5\right)\) 

\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\) 

\(\Rightarrow2n\in\left\{17;15;21;11\right\}\) 

\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n 

\(\Rightarrow x\in\varnothing\)

28 tháng 3 2018

a)n = 1 ⇒ 31 = 3 < 8 = 8.1

n = 2 ⇒ 32 = 9 < 16 = 8.2

n = 3 ⇒ 33 = 27 > 24 = 8.3

n = 4 ⇒ 34 = 81 > 32 = 8.4

n = 5 ⇒ 35 = 243 > 40 = 8.5

b) Dự đoán kết quả tổng quát: 3n > 8n với mọi n ≥ 3

- n = 3, bất đẳng thức đúng

- Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là:

3k > 8k

Ta phải chứng minh rằng bất đẳng thức cũng đúng với n = k + 1, tức là:

3(k + 1) > 8(k + 1)

Thật vậy, từ giả thiết quy nạp ta có:

3(k + 1) = 3k.3 > 8k.3 = 24k = 8k + 16k

k ≥ 3 ⇒ 16k ≥ 16.3 = 48 > 8

Suy ra: 3(k + 1) > 8k + 8 = 8(k + 1)

Vậy bất đẳng thức đúng với mọi n ≥ 3

12 tháng 6 2017

A,B,C là những nguyên tử cùng 1 nguyên tố hóa học vì

A : 8p

B: 8p

C: 8e mak e = p => có 8p

các nguyên tử này có cùng số p nên cùng là 1 nguyên tố

NV
4 tháng 12 2021

\(\lim\limits\left(2-3n\right)^4\left(n+1\right)^3=\lim n^7\left(3-\dfrac{2}{n}\right)^4\left(1+\dfrac{1}{n}\right)^3=+\infty\)

\(\lim\left(\sqrt[3]{n+4}-\sqrt[3]{n+1}\right)=\lim\dfrac{3}{\sqrt[3]{\left(n+4\right)^2}+\sqrt[3]{\left(n+4\right)\left(n+1\right)}+\sqrt[3]{\left(n+1\right)^2}}=0\)

\(\lim\left(\sqrt[3]{8n^3+3n^2+4}-2n+6\right)=\lim\dfrac{8n^3+3n^2+4-\left(2n-6\right)^3}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)

\(=\lim\dfrac{75n^2-216n+220}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)

\(=\lim\dfrac{75-\dfrac{216}{n}+\dfrac{220}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}+\dfrac{4}{n^3}\right)^2}+\left(2-\dfrac{6}{n}\right)\sqrt[3]{8+\dfrac{3}{n}+\dfrac{4}{n^3}}+\left(2-\dfrac{6}{n}\right)^2}\)

\(=\dfrac{75}{\sqrt[3]{8^2}+2.\sqrt[3]{8}+2^2}=...\)

NV
4 tháng 12 2021

d.

\(\lim\left(\sqrt[3]{8n^3+3n^2-2}+\sqrt[3]{5n^2-8n^3}\right)\)

\(=\lim\left(\sqrt[3]{8n^3+3n^2-2}-\sqrt[3]{8n^3-5n^2}\right)\)

\(=\lim\dfrac{8n^3+3n^2-2-\left(8n^3-5n^2\right)}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)

\(=\lim\dfrac{8n^2-2}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)

\(=lim\dfrac{8-\dfrac{2}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)^2}+\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)\left(8-\dfrac{5}{n}\right)}+\sqrt[3]{\left(8-\dfrac{5}{n}\right)^2}}\)

\(=\dfrac{8}{\sqrt[3]{8^2}+\sqrt[3]{8.8}+\sqrt[3]{8^2}}=...\)

14 tháng 4 2015

A là số gì  , đề thiếu dự kiện