K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)

\(B=\dfrac{2\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)

\(B=\dfrac{2}{3}:\dfrac{4}{5}\) ( Do \(\left\{{}\begin{matrix}1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\ne0\\1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\ne0\end{matrix}\right.\))

\(B=\dfrac{2}{3}\cdot\dfrac{5}{4}=\dfrac{2\cdot5}{3\cdot4}=\dfrac{5}{6}\)

26 tháng 3 2017

\(B=\dfrac{2-\dfrac{2}{19}+\dfrac{2}{43}-\dfrac{2}{2017}}{3-\dfrac{3}{19}+\dfrac{3}{43}-\dfrac{3}{2017}}:\dfrac{4-\dfrac{4}{29}+\dfrac{4}{41}-\dfrac{4}{2018}}{5-\dfrac{5}{29}+\dfrac{5}{41}-\dfrac{5}{2018}}\)

\(\Rightarrow\)\(B=\dfrac{2-\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}{3\left(1-\dfrac{1}{19}+\dfrac{1}{43}-\dfrac{1}{2017}\right)}:\dfrac{4\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}{5\left(1-\dfrac{1}{29}+\dfrac{1}{41}-\dfrac{1}{2018}\right)}\)

\(\Rightarrow B=\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{10}{12}=\dfrac{5}{6}\)

13 tháng 8 2023

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)

\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)

\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)

\(=>x+1=0\)

\(=>x=-1\)

b,

\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)

\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)

\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)

\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)

\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)

Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)

\(=>x+2021=0\)

\(=>x=-2021\)

 

c,

\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)

\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)

\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)

\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)

Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)

\(=>x+329=0\)

\(=>x=-329\)

25 tháng 12 2017

a, \(5\dfrac{4}{13}.15\dfrac{3}{41}-5\dfrac{4}{13}.2\dfrac{3}{41}\)

\(=\left(15\dfrac{3}{41}-2\dfrac{3}{41}\right).\dfrac{69}{13}=\dfrac{13.69}{13}=69\)

b, \(\dfrac{2^3}{3^3}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.2017^0\)

\(=\dfrac{8}{27}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.1=\dfrac{1}{2}+\dfrac{2017}{2018}-\dfrac{1}{2}=\dfrac{2017}{2018}\)

c, \(3:\left(-\dfrac{3}{2}\right)^2+\dfrac{1}{9}.\sqrt{36}=3:\dfrac{9}{4}+\dfrac{1}{9}.6=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)

25 tháng 12 2017

a,

\(5\dfrac{4}{13}.14\dfrac{3}{41}-5\dfrac{4}{13}.2\dfrac{3}{41}=5\dfrac{4}{13}.\left(14\dfrac{3}{41}-2\dfrac{3}{41}\right)\)

=\(5\dfrac{4}{13}.13\)

=\(\dfrac{69}{13}.13\)

=69

1 tháng 5 2018

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2018^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2018.2019}\)

=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(=\dfrac{1}{2}-\dfrac{1}{2019}< 1\)

Vậy A < 1.

25 tháng 8 2017

Bài 2 :

\(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+............+\dfrac{2017}{4^{2017}}\)

\(\Leftrightarrow4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...........+\dfrac{2017}{4^{2016}}\)

\(\Leftrightarrow4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+..........+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+..........+\dfrac{2017}{4^{2017}}\right)\)

\(\Leftrightarrow3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2016}}\)

Đặt :

\(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2016}}\)

\(\Leftrightarrow4A=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+..........+\dfrac{1}{4^{2015}}\)

\(\Leftrightarrow4A-A=\left(4+1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{2016}}\right)\)

\(\Leftrightarrow3A=4-\dfrac{1}{4^{2016}}\)

\(\Leftrightarrow D=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}\)

\(\Leftrightarrow3S=\dfrac{4}{3}-\dfrac{1}{2^{2016}.3}-\dfrac{2017}{4^{2016}}\)

\(\Leftrightarrow3S< \dfrac{4}{3}\)

\(\Leftrightarrow S< \dfrac{4}{9}\)

\(\Leftrightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

26 tháng 8 2017

\(A=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\) ( A cho đẹp :v)

\(4A=4\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)

\(4A=1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\)

\(4A-A=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2017}{4^{2016}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\right)\)\(3A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}-\dfrac{2017}{4^{2017}}\)

Đặt:

\(M=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\)

\(4M=4\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)

\(4M=4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\)

\(4M-M=\left(4+1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2015}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{2016}}\right)\)\(3M=4-\dfrac{1}{4^{2016}}\)

\(M=\dfrac{4}{3}-\dfrac{1}{4^{2016}}\)

Thay M vào A ta có:

\(A=\dfrac{4}{9}-\dfrac{1}{4^{2016}.3}-\dfrac{2017}{4^{2017}}\)

\(\Rightarrow A< \dfrac{1}{2}\Rightarrowđpcm\)

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

25 tháng 3
Giải:

a) S = 1.2 + 2.3 + 3.4 + ... + 99.100

S có thể được viết lại thành:

S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)

= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98

= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)

Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:

S = n(n+1)(2n+1)/6

Với n = 99, ta có:

S = 99.100.199/6 = 331650

Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:

S = n(n+1)/2

Với n = 98, ta có:

S = 98.99/2 = 4851

Do đó, S = 331650 - 4851 = 326799

b) B = 4924.12517.28−530.749.45529.162.748

B có thể được viết lại thành:

B = (4924.12517.28) / (530.749.45529.162.748)

B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)

B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529

B = 108 / 45529

c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101

C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101

C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)

C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)

C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)

d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018

D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^