Cho a, b,c là các số không âm chứng minh rằng
(a+b)(b+c)(c+a)≥8abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BDT AM-GM
\(=>a+b\ge2\sqrt{ab}\)
\(=>b+c\ge2\sqrt{bc}\)
\(=>c+a\ge2\sqrt{ca}\)
\(=>VT\ge2.2.2\sqrt{ab.bc.ca}=8abc\left(dpcm\right)\)
dấu"=" xảy ra<=>a=b=c
Áp dụng bất đẳng thức AM-GM:
\(a+b\ge2\sqrt{ab}\left(1\right)\\ a+c\ge2\sqrt{ac}\left(2\right)\\ b+c\ge2\sqrt{bc}\left(3\right)\)
Nhân vế theo vế \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\ge\right)8abc\) ( với \(a,b,c\ge0\) )
tui làm đc là phải tịk nha!
a+b+c=1\(\Rightarrow\)1-a=b+c;1-b=c+a;1-c=a+b \(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=\)(a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8.abc\(\ge8\).dấu ''=''xảy ra khi một tong 3 số a;b;c là 1 2 số còn lại bằng 0
Không có giá trị a,b,c thỏa mãn khi a.b,c là số dương và tổng bằng 1
Cho các số dương a,b,c không âm
Và a+b+c=1
Chứng minh (1-a)(1-b)(1-c)lớn hơn bằng 8abc
Giúp mk với nha!
Do \(0\le a;b;c\le2\)
\(\Rightarrow abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\)
\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\ge4\)
\(\Leftrightarrow9-\left(a^2+b^2+c^2\right)\ge4\)
\(\Leftrightarrow a^2+b^2+c^2\le5\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị
Lần sau nhớ viết đề kĩ hơn nha:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) và a, b, c > 0
Giả sử \(a\ge b\ge c>0\Rightarrow a+b\ge a+c\ge b+c\)
\(\text{Do đó: }a\ge b\ge c\text{ và }\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng BĐT Chebyshev cho hai dãy đơn điệu cùng chiều ta thu được:
\(3\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Nhân 2 vào hai vế tách ra rồi dùng AM - GM tiếp tục vào vế phải rồi từ đó suy ra đpcm:)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ac+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\) ( 1 )
Có BĐT phụ:\(\left(a+b+c\right)^2\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)
Áp dụng vào ( 1 ) ta có:
\(A\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra tại \(a=b=c>0\)
P/S:Có tới 45 cách CM bài toán này,bạn lên google có đầy.
Dùng bất đẳng thức phụ:(x+y)2≥4xy
Ta có (a+b)2≥4ab ;(c+b)2≥4cb;(a+c)2≥4ac
⇒(a+b)2(b+c)2(a+c)2≥64(abc)2
do đó (a+b)(b+c)(c+a)≥8abc
Dấu “=” xảy ra khi a = b = c
AD BĐT cô si cho số không âm
(a+b)(a+c)(b+c)\(\ge\)\(2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}\)=8\(\sqrt{\left(abc\right)^2}\)=8abc