Cho tam giác ABC nội tiếp đường tròn (O;R) đường kính BC với AB<AC
a, tính góc BAC
b,vẽ đường tròn (I) đường kính OA cắt AB , AC lần lượt tại H,K .Chứng minh ba điểm H,I,K thẳng hàng
c, Tia OH, OK cắt tiếp tuyến tại A với (O) lần lượt tại D,E . Chứng minh BD+CE=DE
d,Chứng minh : đường tròn đó qua ba điểm D,O,E tiếp xúc với BC
A B C O H K I D E G 1 1 1
a, Xét \(\Delta BAC\)có OA = OB = OC ( = R )
=> \(\Delta BAC\)vuông tại A
\(\Rightarrow\widehat{BAC}=90^o\)
b, Xét \(\Delta AHO\) có IA = IH = IO (Bán kính (I))
=> \(\Delta AHO\)vuông tại H
=> \(\widehat{AHO}=90^o\)
Tương tự \(\widehat{AKO}=90^o\)
Tứ giác AHOK có 3 góc vuông nên là hcn
=> Trung điểm I của OA cũng là trung điểm của HK
Vì OA = OB ( = R )
=> \(\Delta AOB\)cân tại O
\(\Rightarrow\widehat{A_1}=\widehat{B_1}\)
Xét \(\Delta AHK\)vuông tại A có I là trung điểm HK
=> IA = IH
\(\Rightarrow\Delta AIH\)cân tại I
\(\Rightarrow\widehat{A_1}=\widehat{H_1}\)
Do đó \(\widehat{H_1}=\widehat{B_1}\)
=> HI // BC (so le trong)
Tương tự IK // BC
Do đó H , I , K thẳng hàng (tiên đề Ơ-clit)
c, Xét \(\Delta AOB\)cân tại O có OH là đường cao
=> OH là đường trung trực của AB
Mà điểm D thuộc OH
=> DA = DB
Tương tự EA = EC
Khi đó BD + CE = DA + EA = DE (DDpcm0+)
d,Gọi G là trung điểm DE
Mà tam giác DOE vuông tại D nên G là tâm (DOE)
Dễ thấy BD , CE là tiếp tuyến (O)
Nên BD , CE cùng vuông với BC
=> BD // CE
=> BDEC là hình thang
Mà GO là đường trung bình (dễ)
=> GO // BD
=> GO vuông với BC
Mà O thuộc BC
=> (DOE) tiếp xúc BC