Cho a, b là các thực dương .Chứng minh ab(a^2+b^2)<=(a+b)^4/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a, b là các số thực dương. Chứng minh rằng:\(\frac{a}{b}+\frac{b}{a}+\frac{ab}{a^2-ab+b^2}\ge3\)
ta có :
\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2+b^2-ab}{ab}+1\)
Vậy \(\frac{a}{b}+\frac{b}{a}+\frac{ab}{a^2-ab+b^2}=\frac{a^2+b^2-ab}{ab}+\frac{ab}{a^2-ab+b^2}+1\ge2+1=3\)(BĐT Cauchy)
Vậy ta có điều phải chứng minh
dấu bằng xảy ra khi : \(\frac{ab}{a^2-ab+b^2}=\frac{a^2-ab+b^2}{ab}\Leftrightarrow a=b\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Bai này quen quen ! Mình còn ghi trong vở nè !
Chứng minh:
Áp dụng bất đẳng thức Schur ta có :
\(\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\left(đpcm\right)\)
Bất đẳng thức cần chứng minh tương đương với
( 1 + a ) ( 1 + b ) ≥ 1 + a b 2 ⇔ 1 + a + b + a b ≥ 1 + 2 a b + a b ⇔ a + b − 2 a b ≥ 0 ⇔ a - b 2 ≥ 0
(luôn đúng với mọi a, b > 0)