Giải PT : \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
1
ĐK: \(x\ge1\)
Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)
Khi đó:
\(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow t^2-2t+1=16\\ \Leftrightarrow\left(t-1\right)^2=4^2\\ \Leftrightarrow t-1=4\\ \Leftrightarrow t=4+1=5\left(tm\right)\)
\(\Leftrightarrow\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=5^2=25\\ \Leftrightarrow x=25+1=26\left(tm\right)\)
Vậy PT có nghiệm duy nhất x = 26.
2 ĐK: \(3\le x\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=0\\\sqrt{x-3}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Từ điều kiện và bài giải ta kết luận PT vô nghiệm.
3 ĐK: \(x\ge4\)
\(\Leftrightarrow\sqrt{x-4}=7-2=5\\ \Leftrightarrow x-4=5^2=25\\ \Leftrightarrow x=25+4=29\left(tm\right)\)
Vậy PT có nghiệm duy nhất x = 29.
4
ĐK: \(x\ge1\)
Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)
Khi đó:
\(x-\sqrt{x-2\sqrt{x-1}}=0\\ \Leftrightarrow t^2+1-\sqrt{t^2-2t+1}=0\\ \Leftrightarrow t^2+1-\sqrt{\left(t-1\right)^2}=0\\ \Leftrightarrow t^2+1-\left|t-1\right|=0\left(1\right)\)
Trường hợp 1:
Với \(0\le t< 1\) thì:
\(\left(1\right)\Leftrightarrow t^2+1-\left(1-t\right)=0\\ \Leftrightarrow t^2+t=0\\ \Leftrightarrow t\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-1}=0\Rightarrow x=1\left(nhận\right)\\t=-1\left(loại\right)\end{matrix}\right.\)
Trường hợp 2:
Với \(t\ge1\) thì:
\(\left(1\right)\Leftrightarrow t^2+1-\left(t-1\right)=0\\ \Leftrightarrow t^2-t+2=0\)
\(\Delta=\left(-1\right)^2-4.2=-7< 0\)
=> Loại trường hợp 2.
Vậy PT có nghiệm duy nhất x = 1.
5
ĐK: \(x\ge2\)
Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)
Khi đó:
\(\sqrt{x-2}-\sqrt{x^2-2x}=0\\ \Leftrightarrow\sqrt{x-2}-\sqrt{x}.\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{t^2+2-2}-\sqrt{t^2+2}.\sqrt{t^2+2-2}=0\\ \Leftrightarrow\sqrt{t^2}-\sqrt{t^2+2}.\sqrt{t^2}=0\\ \Leftrightarrow t-\sqrt{t^2+2}.t=0\\ \Leftrightarrow t\left(1-\sqrt{t^2+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-2}=0\Rightarrow x=2\left(tm\right)\\\sqrt{t^2+2}=1\Rightarrow t^2+2=1\Rightarrow t^2=-1\left(loại\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất x = 2.
6 Không có ĐK vì đưa về tổng bình lên luôn \(\ge0\)
\(\Leftrightarrow\sqrt{\sqrt{2}^2-2.\sqrt{2}.\sqrt{1}+\sqrt{1}^2}-\sqrt{x^2+2x.\sqrt{2}+\sqrt{2}^2}=0\\ \Leftrightarrow\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}-\sqrt{\left(x+\sqrt{2}\right)^2}=0\\ \Leftrightarrow\left|\sqrt{2}-\sqrt{1}\right|-\left|x+\sqrt{2}\right|=0\\ \Leftrightarrow\sqrt{2}-1-\left|x+\sqrt{2}\right|=0\)
Trường hợp 1:
Với \(x\ge-\sqrt{2}\) thì:
\(\left(1\right)\Leftrightarrow\sqrt{2}-1-\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1-x-\sqrt{2}=0\\ \Leftrightarrow-1-x=0\\ \Leftrightarrow x=-1\left(tm\right)\)
Với \(x< -\sqrt{2}\) thì:
\(\left(1\right)\Leftrightarrow\sqrt{2}-1--\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1+x+\sqrt{2}=0\\ \Leftrightarrow2\sqrt{2}+1+x=0\\ \Leftrightarrow x=-1-2\sqrt{2}\left(tm\right)\)
Vậy phương trình có 2 nghiệm \(x=-1\) hoặc \(x=-1-2\sqrt{2}\)
1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)
\(\Leftrightarrow\left|x+5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)
2) \(ĐK:x\ge2\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)
3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)
\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4) \(ĐK:x\ge0\)
\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)
Ta có :
\(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+1}-\sqrt{x+2}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}=-\sqrt{x+1}+\sqrt{x+2}\)
Tương tự :
\(\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}=-\sqrt{x+2}+\sqrt{x+3}\)
\(\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}=-\sqrt{x+3}+\sqrt{x+4}\)
....
\(\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2010}}=-\sqrt{x+2019}+\sqrt{x+2010}\)
Từ những ý trên , pt trở thành :
\(-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+4}-.....-\sqrt{x+2019}+\sqrt{x+2020}=11\)
\(\Leftrightarrow\sqrt{x+2020}-\sqrt{x+1}=11\)
\(\Leftrightarrow x+2020-2\sqrt{\left(x+2020\right)\left(x+1\right)}+x+1=121\)
\(\Leftrightarrow2x+1900=2\sqrt{\left(x+1\right)\left(x+2020\right)}\)
\(\Leftrightarrow x+950=\sqrt{\left(x+1\right)\left(x+2020\right)}\)
\(\Leftrightarrow x^2+1900x+902500=x^2+2021x+2020\)
\(\Leftrightarrow121x-900480=0\)
\(\Leftrightarrow x=\dfrac{900480}{121}\)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
a:
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
=>|x-3|=3
=>x-3=3 hoặc x-3=-3
=>x=0 hoặc x=6
b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
=>\(\left|\sqrt{x-1}+1\right|=2\)
=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)
=>x-1=1
=>x=2
c:
ĐKXĐ: x>4/5
PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)
=>\(\dfrac{5x-4}{x+2}=4\)
=>5x-4=4x+8
=>x=12(nhận)
d: ĐKXĐ: x-4>=0 và x+1>=0
=>x>=4
PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)
=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)
=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)
=>\(\sqrt{x^2-3x-4}=14-x\)
=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196
=>x<=14 và -3x-4=-28x+196
=>x<=14 và 25x=200
=>x=8(nhận)
a) \(\sqrt{x^2-6x+9}=3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
\(\Leftrightarrow\left|x-3\right|=3 \)
TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)
Pt trở thành:
\(x-3=3\) (ĐK: \(x\ge3\))
\(\Leftrightarrow x=3+3\)
\(\Leftrightarrow x=6\left(tm\right)\)
TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)
Pt trở thành:
\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=-3+3\)
\(\Leftrightarrow x=0\left(tm\right)\)
b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))
\(\Leftrightarrow x+2\sqrt{x-1}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4-x\)
\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)
\(\Leftrightarrow4x-4=16-8x+x^2\)
\(\Leftrightarrow x^2-12x+20=0\)
\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))
\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)
\(\Leftrightarrow5x-4=4x+8\)
\(\Leftrightarrow x=12\left(tm\right)\)
\(x\ge1\)
\(\sqrt{x-1}+\sqrt{\left(x^2+1\right)\left(x+1\right)}=1+\sqrt{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}-\sqrt{\left(x^2+1\right)\left(x+1\right)}-\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x^2+1\right)\left(x+1\right)}\left(\sqrt{x-1}-1\right)-\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{\left(x^2+1\right)\left(x+1\right)}-1\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\sqrt{x-1}-1=0\) (do \(x\ge1\Rightarrow\sqrt{\left(x^2+1\right)\left(x+1\right)}>1\Rightarrow\sqrt{\left(x^2+1\right)\left(x+1\right)}-1>0\))
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x=2\)