Tìm các chữ số a, b, c biết :
a. abc + ab + a = 1037
b. ab + bc + ca = abc
Nhớ giải cả lời nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab + bc + ca = abc
( a * 10 + b ) + ( b * 10 + c ) + ( c * 10 + a ) = a * 100 +b*10 + c
a * 11 + b * 11 +c * 11 =a * 100 +b*10 + c
cùng bớt a * 11 + b * 10 +c ở hai vế , ta có :
b * 1 + c * 10 = a * 89
a = 1
b = 9
c = 8
Vậy số abc cần tìm là 198
Cách 1: P= ab.bc.ca/11.(a+b+c) --> ab.bc.ca = 3^4 .41.(a+b+c)
ab+bc+ca=10a+b+10b+c+10c+a=11(a+b+c) .
Nếu vế trái là P thìta có:
P=ab.bc.ca/11.(a+b+c) =3321/11 .
Đơn giản hóa và nhân chéo ta được ab.bc.ca=3321. (a+b+c) . 3321= 41 .3^4. 41 Một là số nguyên tố nên các số bên trái phải có số chia hết cho 41.
nhưng các số này là các số có 2 chữ số, vậy số chia hết cho 41 chỉ có thế là 41 và 82.
Gọi cho ab là số chia hết cho 41. Khi đó có hai trường hợp: ab=41 do đó a=4; b=1 và trường hợp 2: ab=82 do đó a=8; b=2.
Trường hợp a=4; b=1 thì khi đó
41× bc×ca=41.3^4.(a+b+c)
--> (10+c)(10c+4)=3^4(4+1+c)=3^4(5+c).
Vì bên trái chẵn nên c phải lẻ.
C=5
Trường hợp 2, cũng làm tương tự a=8; b=2 không có nghiệm.
Đáp số a=4; b=1; c=5.
Cách 2:
Nhân cả hai vế với (ab+bc+ca)x11 ta được:
abxbcxcax11=(ab+bc+ca) x3321.
phân tích:
ab+bc+ca= a x 11 + b x11 + c x11
= (a + b +c)x 11.
Vậy abxbcxcax11 = (a + b + c)x11X3321.
Chia cả hai vế cho 11 ta được
ab x bc xca= ( a + b+c)x 3321.
Ta thấy 3321 :3:3:3:3=41 (hay 3321:81=41)
Vậy abxbcxca= (a+b+c) x81x41.
Vì 41 không chia được cho số nào khác 1, còn 81 chia hết được cho 3, 8, 27 nên ab, bc, ca bắt buộc một trong ba số phải có 1 số là 41 hoặc 41x2=82 (41x3 trở đi không được vì thành số có 3 chữ số)
Xét: nếu 1 trong ba số là 41, thì hai số còn lại, 1 số có hàng đơn vị là 4, 1 số có hàng chục là 1. mặt khác ta phân tích 81 thành 9x9 hoặc 27x3
Ta có 9x2=18, 9x9= 81, vậy 3 số là 18, 81, 41 (loại, vì không thành dạng ab, bc, ca)
Ta có: 27x 2= 54; 3x4=12, 3x5=15, 3x6= 18, xét 3 cặp số 54, 41, 12 và 54, 41, 15 và 54, 41, 18 thì chỉ cặp 3 số 54, 41, 15 thỏa mãn dạng ab, bc,ca. Thử lại ta thấy thỏa mãn.
Nếu 1 trong 3 số là 82 thì hai số còn lại 1 số có hàng đơn vị là 2, một số có hàng chục là 8. ta thấy 9x9=81, số còn lại là 88, mà 88 không chia hết cho 9. nếu 27 x3=81; thì 3x4, 3x5, 3x6 thì tạo ra các cặp số không thỏa mãn đề bài.
3 chữ số cần tìm là 5,1,4
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}\)
\(=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\hept{\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)=> a = b = c (đpcm)
Từ phép tính abcd + abc + ab + a = 5313 ta di chuyển các chữ số sẽ được.
aaaa + bbb + cc + a = 5315
a a a a
+ b b b
c c
d
5 3 1 5
Từ phép tính trên cho ta thấy a=4 (không thể bằng 5 (5555 > 5315) ; không thể bằng 3 vì hàng trăm không thể có số nhớ là 2).
Ta được bbb+cc+d = 5315 – 4444 = 871
Hay
b b b
+ c c
d
8 7 1
Tương tự ta có b = 7, ta được cc + d = 871 – 777 = 94
c c
+ d
9 4
Tương tự ta có c = 8 và d = 6
Số abcd = 4786
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow\begin{cases}a=b\\b=c\\c=a\end{cases}\)
=> a = b = c (đpcm)
Ta có : abc = ab + bc + ca
=> 100a + 10b + c = 10a + b + 10b + c + 10c + a
=> 100a + 10b + c = ( 10a + a ) + ( 10b + b ) + ( 10c + c )
=> 100a + 10b + c = 11a + 11b + 11c
=> 100a - 11a = ( 11b - 10b ) + ( 11c - c )
=> 89a = b + 10c
Vì 89a > b + 10c
=> Dấu " = " xảy ra khi a = 1
Khi đó 89 = b + 10c
+) Nếu c = 9 và b = một số bất kì => b + 10c = b + 90 ( Vô lí vì 89 < 90 + b với mọi b )
+) Nếu c = 8 và b = một số bất kì => b + 10c = b + 80
Khi đó 89 = b + 80 => b = 9 ( thỏa mãn )
+) Nếu c \(\le\)7 và b = một số bất kì => b + 10c \(\le\)b + 70 ( loại vì nếu b = 9 thì vẫn chưa bằng 89 )
Vậy : a = 1 ; b = 9 ; c = 8