2n+1/n+2 > 0, ∀n ∈N* tại sao lại > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(2n+12⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow\hept{\begin{cases}2n+12⋮n+2\\2n+4⋮n+2\end{cases}}\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(8\right)\)
Suy ra :
+) n + 2 = 1 => n = -1 (loại)
+) n + 2 = 2 => n = 0
+) n + 2 = 4 => n = 2
+) n + 2 = 8 => n = 6
Vậy ......
b/ \(3n+5⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Leftrightarrow\hept{\begin{cases}3n+5⋮n-2\\3n-6⋮n-2\end{cases}}\)
\(\Leftrightarrow11⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(11\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n+2=1\\n+2=11\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=-1\left(loại\right)\\n=9\end{cases}}\)
Vậy ..
a/ \(\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\left(loại\right)\end{cases}}\)
Vậy ....
b/ \(\left(x+7\right)\left(x^2-36\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+7=0\\x^2-36=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x^2=36\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x=6or=-6\end{cases}}\)
Vậy ...
Lời giải:
Với mọi $n\in\mathbb{N}^*$ thì:
$2n+1>0$
$n+2>0$
Do đó thương của chúng là $\frac{2n+1}{n+2}>0$
lop 2 kho du vay