Mọi người ơi giúp mình bài này với😻 Nghĩ mãi mà chẳng ra!😭
Tìm các nghiệm nguyên của các phương trình: a)x^3+x^2+x+1=y^3
b)x^4+x^3+x^2+x+1=y^2
c) x(x^2+x+1)=4y(y+1)
d) x^4+x^3+x^2+x=y^2+y
Ai làm đúng, nhanh mình tick cho💞
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
Xin lỗi ạ. Tại không giỏi đánh máy. Vậy bỏ câu này đi ạ. Chị giải câu kia giúp e nhé
1.
Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN
\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ
Hàm có 4 tiệm cận
2.
Căn thức của hàm luôn xác định
Ta có:
\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn
\(\Rightarrow x=2\) ko phải TCĐ
\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)
\(\Rightarrow x=3\) là tiệm cận đứng duy nhất
Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé, bạn thông cảm
a, Dùng phương pháp kẹp
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow x^3+x^2+x+1>x^3\)
\(\Rightarrow y^3>x^3\)
\(\Rightarrow y>x\)(1)
Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)
\(=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)
\(\Rightarrow\left(x+2\right)^3>y^3\)
\(\Rightarrow x+2>y\)(2)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)
Mà \(x;y\inℤ\Rightarrow y=x+1\)
Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)
*Với x = 0 => y= 1
*Với x = -1 => y = 0
Vậy ...
Ailamfgiups mình caaub,c, d với