Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tồn tại hay không 2 số tự nhiên x,y thỏa mãn
10x+48=y^2
Đầu tiên ta xét CSTC của 1 số chính phương.
(...1)2 = ...1
(...2)2 = ...4
.....
(...9)2 = ...1
Phần đó tự làm, dễ dàng ta thấy số chính phương có CSTC là 0,1,4,5,6,9. Không có số chính phương nào có CSTC là 2,3,7,8.
Mà x là số tự nhiên nên 10x = ...0
=> 10x + 48 = ...0 + 48 = ...8
Lại có y2 là số chính phương (vì y là số tự nhiên)
==> Không tồn tại x,y
10x = ...0
...0 + 48 = ...8
y^2 ∈ {...1, ...4, ...9, ...6, ...5, ...0}
=> y = ∅
Vì y = ∅ nên x = ∅
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013
:D :D :D :D
có tồn tại hay ko hai số tự nhiên ab nguyên tố cùng nhau thỏa mãn x^2 = 2 a+5b và y^2=2b+5a
chứng minh rằng không tồn tại các số tự nhiên x;y;z thỏa mãn 3^x-2^y-2015^z=85
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương. Ai đó giúp mình đi mòaa🤤🤤🤤
_Chứng minh rằng không tồn tại số tự nhiên x và y khác 0 thỏa mãn x^2 + y và x+y^2 là số chính phương
Tồn tại hay không số tự nhiên n thỏa mãn n^2 + 2020 là tích của 3 số liên tiếp
Chứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn: 3x - 2y - 2015z = 85
Đầu tiên ta xét CSTC của 1 số chính phương.
(...1)2 = ...1
(...2)2 = ...4
.....
(...9)2 = ...1
Phần đó tự làm, dễ dàng ta thấy số chính phương có CSTC là 0,1,4,5,6,9. Không có số chính phương nào có CSTC là 2,3,7,8.
Mà x là số tự nhiên nên 10x = ...0
=> 10x + 48 = ...0 + 48 = ...8
Lại có y2 là số chính phương (vì y là số tự nhiên)
==> Không tồn tại x,y
10x = ...0
...0 + 48 = ...8
y^2 ∈ {...1, ...4, ...9, ...6, ...5, ...0}
=> y = ∅
Vì y = ∅ nên x = ∅