Cho a,b,c thỏa mãn điều kiện a2+b2+c2=1
CM: abc +2(1+a+b+c+ab+ac+bc)≥0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: 1+a^2;1+b^2;1+c^2
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)
\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)
=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)
Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)
\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)
Cần C/m:
\(1+a+b+c+ab+bc+ca\ge0\)
Ta có:
\(1+a+b+c+ab+bc+ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)
\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)
=> ĐPCM
`1)(a+b+c)^2=3(a^2+b^2+c^2)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2`
`<=>2ab+2bc+2ca=2a^2+2b^2+2c^2`
`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
Mà `(a-b)^2+(b-c)^2+(c-a)^2>=0`
Vậy dấu "=" xảy ra chỉ có thể là `a=b=c`
`2)(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2ab+2bc+2ca=2a^2+2b^2+2c^2`
`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
Mà `(a-b)^2+(b-c)^2+(c-a)^2>=0`
Vậy dấu "=" xảy ra chỉ có thể là `a=b=c`
Vậy nếu `a=b=c` thì ....
Ta có : \(a^2+b^2+c^2=1\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le1\)
\(\Rightarrow-1\le a;b;c\le1\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)
\(\Rightarrow a+b+c+ab+ac+bc+abc+1\ge0\left(1\right)\)
Lại có : \(\left(a+b+c+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac+a+b+c\right)+1\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac+a+b+c+1\right)\ge0\)
\(\Leftrightarrow ab+bc+ac+a+b+c+1\ge0\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow abc+2\left(ab+bc+ac+a+b+c+1\right)\ge0\left(đpcm\right)\)