Tìm số nguyên tố
ab (a<b) biết
ab + ba là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: A=x^4-9x^3+21x^2+x+a
A chia hết cho B
=>x^4-2x^3-7x^3+14x^2+7x^2-14x+15x-30+a+30 chia hết cho x-2
=>a+30=0
=>a=-30
b: A chia hết cho B
=>x^4+2x^3-12x^3-24x^2+45x^2+90x-82x-164+a+164 chia hết cho x+2
=>a+164=0
=>a=-164
Lâu rồi không giải bài lớp 6 có gì sai sót xin bỏ qua hé!
1. a, để a+b lớn nhất thì a, b phải lớn nhất
mà a,b là số nguyên có 4 chữ số nên a, b lớn nhất đều bằng 9999
suy ra a+b lớn nhất là 9999+9999=(tự tính)
b, tương tự trên nhưng a, b đều bằng -9999 (âm nha)
hai câu sau thì tự làm tìm giá trị a,b rồi cộng trừ theo đề.
2. số nguyên âm lớn nhất là -1
Mà x+2019 là số nguyên âm lớn nhất suy ra x+2019=-1
tiếp theo tự tính
3.hướng dẫn
b, \(\left|x-28\right|+7=15\)
\(\Rightarrow\left|x-28\right|=8\)
\(\Rightarrow\orbr{\begin{cases}x-28=8\\x-28=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=36\\x=30\end{cases}}\)
vậy.........................
4. hướng dẫn \(a.b=0\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
a.,,\(\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+7=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-7\end{cases}}\)
Vậy....
b, \(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x^2=9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
Vậy.....................
c,\(\left(x^2-7\right)\left(x^2-51\right)< 0\)
(đúng ra mk sẽ giải cách dễ hiểu hơn nhưng hơi rắc rối mà phần mềm này ko hiển thị hết được nên thôi nha)
Hướng dẫn: hai số nhân với nhau mà âm thì hai số đó trái dấu (tức là 1 âm 1 dương)
khi đó số lớn hơn sẽ dương mà số bé hơn sẽ âm
giải:
Ta có Vì \(\left(x^2-7\right)\left(x^2-51\right)< 0\) nên \(x^2-7\)và \(x^2-51\)trái dấu
Mà \(x^2-7\)\(>\)\(x^2-51\)nên \(\Rightarrow\hept{\begin{cases}x^2-7>0\\x^2-51< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2>7\\x^2< 51\end{cases}}\)\(\Rightarrow7< x^2< 51\)
Mà \(x\inℤ\)nên \(x^2\)là số chính phương \(\Rightarrow x^2\in\left\{9;16;25;36;49\right\}\)
\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)
Làm tắt tí hi vọng bạn hiểu!
Var a,b,ta,tb,r,ucln,bcnn:integer;
Begin
Write('a = ');readln(a);
Write('b = ');readln(b);
ta:=a;
tb:=b;
Repeat
r:=ta mod tb;
ta:=tb;
tb:=r;
Until r = 0;
ucln:=ta;
bcnn:=a*b div ucln;
Writeln('UCLN(',a,'; ',b,') la ',ucln);
Write('BCNN(',a,'; ',b,' la ',bcnn);
Readln
End.
a) -Để B là phân số thì: \(n-4\ne0\Rightarrow n\ne4\) (thỏa mãn n là số nguyên).
b) -Để B là số nguyên thì: \(n⋮\left(n-4\right)\)
=>\(\left(n-4+4\right)⋮\left(n-4\right)\)
=>\(4⋮\left(n-4\right)\)
=>\(n-4\inƯ\left(4\right)\)
=>\(n-4\in\left\{1;-1;4;-4\right\}\)
=>\(n\in\left\{5;3;8;0\right\}\) (đều thỏa mãn điều kiện n nguyên và \(n\ne4\)).
a) Do 97 là số nguyên tố mà 97.a cũng là số nguyên tố nên a=1
b) 101 là số nguyên tố để 101.b là hợp số thì b>=2
c) Xét p=2 thì p2+974 là hợp số (loại)
Xét p=3 thì p2+974 là số nguyên tố
Xét p=3k+1 và 3k+2 thì p2+974 là hợp số (loại)
Vậy p=3 thì p2+974 là số nguyên tố
Tớ không biết đâu bạn cứ cái nhé mình được ít điểm hỏi đáp lắm
\(\overline{ab}+\overline{ba}=11a+11b=11\left(a+b\right)\)là số chính phương.
Mà 11 là số nguyên tố \(\Rightarrow a+b⋮11\)
Do a,b là chữ số
\(\Rightarrow a+b=11\)
Mặt khác \(\overline{ab}\) là số nguyên tố nên:b là số lẻ.
Vì b là chữ số nên:
+) Với b=1 => a=10 (KTM)
+) Với b=3 =>a=8 số đó là 83 (SNT)
thử lần lượt như thế đến b=9 nha.