\(x^2-12+\frac{36}{x^2}-4x+\frac{24}{x}=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
\(x^2+\frac{36}{x^2}-4\left(x-\frac{6}{x}\right)-17=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow a^2=x^2+\frac{36}{x^2}-12\Rightarrow x^2+\frac{36}{x^2}=a^2+12\)
\(a^2+12-4a-17=0\)
\(\Leftrightarrow a^2-4a-5=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=-1\\x-\frac{6}{x}=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2-5x-6=0\end{matrix}\right.\)
\(=\frac{x+2}{4\left(x+6\right)}.\frac{x^2-6^2}{x^2+2x-x-2}\)
\(=\frac{x+2}{4\left(x-6\right)}.\frac{\left(x-6\right).\left(x+6\right)}{x\left(x+2\right)-\left(x+2\right)}\)
\(=\frac{x+2}{4\left(x-6\right)}.\frac{\left(x-6\right).\left(x+6\right)}{\left(x+2\right).\left(x-1\right)}\)
\(=\frac{x+6}{4x-4}\)
\(\dfrac{2}{x^2-x-6}+\dfrac{x+1}{x^2+x-12}=\dfrac{x}{x^2+6x+8}\)
\(\Leftrightarrow\dfrac{2}{\left(x-3\right)\left(x+2\right)}+\dfrac{x+1}{\left(x-3\right)\left(x+4\right)}=\dfrac{x}{\left(x+2\right)\left(x+4\right)}\)
=> 2(x+4)+(x+1)(x+2)=x(x-3)
⇔2x+8+x2+2x+x+2=x2-3x
⇔x2+5x+10=x2-3x
⇔x2-x2+5x+3x=-10
⇔8x=-10
\(\Leftrightarrow\dfrac{-5}{4}\)
Vậy S={-\(\dfrac{5}{4}\)}
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
Bài 1:
d)ĐKXĐ: \(x\ne8\)
Ta có: \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)
\(\Leftrightarrow\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3x-24}=0\)
\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3\left(x-8\right)}=0\)
MTC=24(x-8)
\(\Leftrightarrow\frac{36}{24\left(x-8\right)}+\frac{72x-480}{24\left(x-8\right)}+\frac{3x-24}{24\left(x-8\right)}-\frac{104x-816}{24\left(x-8\right)}=0\)
\(\Leftrightarrow36+72x-480+3x-24-104x+816=0\)
\(\Leftrightarrow348-29x=0\)
\(\Leftrightarrow-29x+348=0\)
\(\Leftrightarrow x=\frac{-348}{-29}=12\)
Vậy: x=12
e) ĐKXĐ: \(x\ne\pm1\)
Ta có: \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4x+4}+\frac{12x-1}{4-4x}=0\)
\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}+\frac{12x-1}{4\left(1-x\right)}=0\)
MTC=4(x+1)(x-1)
\(\Leftrightarrow\frac{24}{4\left(x-1\right)\left(x+1\right)}+\frac{20x^2-20}{4\left(x-1\right)\left(x+1\right)}-\frac{8x^2-9x+1}{4\left(x-1\right)\left(x+1\right)}-\frac{12x^2-11x-1}{4\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2+11x+1=0\)
\(\Leftrightarrow20x+4=0\)
\(\Leftrightarrow20x=-4\)
\(\Leftrightarrow x=-\frac{4}{20}=-0,2\)(loại)
Vậy: x không có giá trị
g) Ta có: \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)
\(\Leftrightarrow\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}}{\frac{x-1}{x-1}+\frac{x+1}{x-1}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2x}{x-1}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-1}{2x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{4x\cdot\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\cdot2x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{2}=0\)
MTC=2(x+1)
\(\Leftrightarrow\frac{2}{2\left(x+1\right)}-\frac{x+1}{2\left(x+1\right)}=0\)
\(\Leftrightarrow2-x+1=0\)
\(\Leftrightarrow1-x=0\)
\(\Leftrightarrow x=1\)(loại vì không thỏa mãn ĐKXĐ)
Vậy: x không có giá trị
b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)
Suy ra:
\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)
\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15
\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2
\(\Leftrightarrow\)4x2-14x = -12
\(\Leftrightarrow4x^2-14x+12=0\)
\(\Leftrightarrow4x^2-8x-6x+12=0\)
\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0
\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)
sử dụng BDT cosi là ra bn à
\(x^2-12+\frac{36}{x^2}-4x+\frac{24}{x}=5\)
\(\Leftrightarrow x^2+\frac{36}{x^2}-4x+\frac{24}{x}=5+12\)
\(\Leftrightarrow x^2+\frac{36}{x^2}-4x+\frac{24}{x}=17\)
\(\Leftrightarrow x^2.x^2+\frac{36}{x^2}.x^2-4x.x^2+\frac{24}{x}.x^2=17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=17x^2-17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow x\in\left\{-1;2;-3;4\right\}\)