K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Bạn tham khảo ở đây:

Câu hỏi của ngô thị gia linh - Toán lớp 7 - Học toán với OnlineMath

15 tháng 10 2016
Help me !
10 tháng 9 2021

các bạn giúp mik với!!!!

17 tháng 12 2016

Bài 1:

A B C D

a, Xét tam giác ADB và tam giác ADC

Ta có: góc BAD = góc CAD

           AD cạnh chung

          góc ADB = góc ADC ( = 180' - góc BAD - góc ABD = 180' - góc CAD - góc ACD)

Do đó:  tam giác ADB = tam giác ADC ( g - c - g)

b, Ta có: tam giác ADB = tam giác ADC ( chứng minh trên)

Suy ra: AB = AC ( hai cạnh tương ứng)

c, Ta có: tam giác ADB = tam giác ADC ( chứng minh trên)

Suy ra: BD = CD( hai cạnh tương ứng)      (1)

và  góc ADB = góc ADC ( hai góc tương ứng)

mà góc ADB + góc ADC = 180' ( kề bù)

Suy ra: góc ADB = 90' hay AD vuông góc với BC (2)

Từ (1) và (2), suy ra: AD là đường trung trực của BD

Nếu bạn đã học tam giác cân rồi thì cách giải sau đây phù hợp hơn, nếu chưa học thì bạn nên giải cách trên.

a,Xét tam giác ADB và tam giác ADC

Ta có: góc BAD = góc CAD

           AB = AC ( góc ABD = góc ACD, tam giác ABC cân tại A)

          góc ABD = góc ACD ( giả thiết)

Do đó:  tam giác ADB = tam giác ADC ( g - c - g)

b, Ta có: góc ABD = góc ACD ( gt)

Suy ra: tam giác ABC cân tại A.

Suy ra: AB = AC

c, Tam giác ABC cân tại A nên AD vừa là đường phân giác cũng vừa là đường trung tuyến.

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

15 tháng 12 2017

Bạn xem lời giải bài tương tự tại đường link dưới nhé:

Câu hỏi của Nguyễn Ngọc Vy - Toán lớp 7 - Học toán với OnlineMath

1 tháng 11 2016

Giúp mk với, mk cần gấp lắm rồi

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: ta có: ΔBAD=ΔBED

=>AB=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)

Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)

Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)

\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)

mà \(\widehat{DBC}=\widehat{ABD}\)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔADI cân tại A