K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

PTHĐGĐ là:

|x|=2

=>x=2 hoặc x=-2

=>A(2;2); B(-2;2)

\(OA=\sqrt{\left(2-0\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(OB=\sqrt{\left(-2-0\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(-2-2\right)^2+\left(2-2\right)^2}=4\)

\(C=2\sqrt{2}+2\sqrt{2}+4=4\sqrt{2}+4\left(cm\right)\)

18 tháng 11 2021

\(b,\) PTHDGD: \(x+2=-\dfrac{1}{2}x+2\Leftrightarrow x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

PT giao Ox của \(y=x+2:\) \(y=0\Leftrightarrow x=-2\Leftrightarrow A\left(-2;0\right)\Leftrightarrow OA=2\)

PT giao Ox của \(y=-\dfrac{1}{2}x+2:\) \(y=0\Leftrightarrow-\dfrac{1}{2}x=-2\Leftrightarrow x=4\Leftrightarrow B\left(4;0\right)\Leftrightarrow OB=4\)

Ta có: \(\left\{{}\begin{matrix}AB=OA+OB=6\\AC=\sqrt{\left(-2\right)^2+2^2}=2\sqrt{2}\\BC=\sqrt{4^2+2^2}=2\sqrt{5}\end{matrix}\right.\)

Do đó \(P_{ABC}=AB+BC+CA=6+2\sqrt{2}+2\sqrt{5}\)

\(S_{ABC}=\dfrac{1}{2}OC\cdot AB=\dfrac{1}{2}\cdot2\cdot6=6\left(đvdt\right)\)

16 tháng 11 2021

\(a,m=3\Leftrightarrow y=f\left(x\right)=x+2\)

\(b,\) PT giao Ox: \(y=0\Leftrightarrow x=-2\Leftrightarrow A\left(-2;0\right)\Leftrightarrow OA=2\)

PT giao Oy: \(x=0\Leftrightarrow y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\)

Vậy \(S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\left(đvdt\right)\)

NM
17 tháng 1 2022

ta cso : 

undefined

4 tháng 12 2021

\(a,\Leftrightarrow1+m=-2\Leftrightarrow m=-3\\ \Leftrightarrow y=x-3\\ \text{Thay }x=2;y=5\Leftrightarrow5=2-3=-1\left(\text{vô lí}\right)\\ \Leftrightarrow E\notinđths\\ b,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Rightarrow x=-m\Rightarrow E\left(-m;0\right)\Rightarrow OE=\left|m\right|\\x=0\Rightarrow y=m\Rightarrow F\left(0;m\right)\Rightarrow OF=\left|m\right|\end{matrix}\right.\)

Gọi H là chân đường cao từ O đến EF

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OE^2}+\dfrac{1}{OF^2}=\dfrac{1}{2m^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)

\(\Leftrightarrow m^2=\dfrac{9}{2}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{\sqrt{2}}\\m=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)

b: M thuộc đồ thị vì \(y_M=x_M\)

N thuộc đồ thị vì \(y_N=x_N\)