x^2-4x+4 viết dưới dạng đa thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(x\right)=\left(5x^3-2x^2+3x-2\right)+\left(-2x^2+4x\right)\)
b: \(P\left(x\right)=\left(5x^3-2x^2+3x-2\right)-\left(2x^2-4x\right)\)
\(a)x^4-2x^3-3x^2+4x+4=(x^4-x^3-2x^2)-\left(x^3-x^2-2x\right)-\left(2x^2-2x-4\right)\)
\(=\left(x^2-x-2\right)\left(x^2-x-2\right)=\left(x^2-x-2\right)^2\)
\(b)x^4+2x^3-23x^2-24x+144=\left(x^4+x^3-12x^2\right)+\left(x^3+x^2-12x\right)-\left(12x^2+12x-144\right)\)
\(=\left(x^2+x-12\right)\left(x^2+x-12\right)=\left(x^2+x-12\right)^2\)
Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)
Gọi đa thức A(x) sau khi bỏ dấu ngoặc là :
\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)
Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)
Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)
Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)
Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng 0
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
đa thức P(x) = 5x3 – 4x2 + 7x - 2
dưới dạng: a) Tổng của hai đa thức một biến. 5x3 – 4x2 + 7x - 2 = (5x3 – 4x2 ) + (7x - 2)
b) Hiệu của hai đa thức một biến. 5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2
còn lại bn tự làm nhé
:ư3
giúp mik vs
(X-2)^2