\(\sqrt{3x+1}\)+\(\sqrt{5x+4}\)=3x\(^2\)-x+2
\
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo thêm ở link sau:
https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831
Để giải phương trình này, ta cần tách các căn bậc hai ra khỏi biểu thức. Hãy xem xét từng phần tử trong phương trình:
√3x^2 - 7x + 3 - √x^2 - 2 = √3x^2 - 5x - 1 - √x^2 - 3x + 4
Để tách căn bậc hai ra khỏi biểu thức, chúng ta có thể đặt:
A = √3x^2 - 7x + 3 B = √x^2 - 2 C = √3x^2 - 5x - 1 D = √x^2 - 3x + 4
Khi đó, phương trình trở thành:
A - B = C - D
Tiếp theo, ta sẽ bình phương cả hai phía của phương trình:
(A - B)^2 = (C - D)^2
(A - B)(A - B) = (C - D)(C - D)
Mở rộng và rút gọn phương trình, ta được:
A^2 - 2AB + B^2 = C^2 - 2CD + D^2
Thay A, B, C, D bằng giá trị đã định nghĩa ban đầu:
(√3x^2 - 7x + 3)^2 - 2(√3x^2 - 7x + 3)(√x^2 - 2) + (√x^2 - 2)^2 = (√3x^2 - 5x - 1)^2 - 2(√3x^2 - 5x - 1)(√x^2 - 3x + 4) + (√x^2 - 3x + 4)^2
Tiếp theo, ta sẽ giải phương trình đã thu gọn:
3x^2 - 7x + 3 - 2√3x^2 - 7x + 3√x^2 - 2 + x^2 - 2x + 1 = 3x^2 - 5x - 1 - 2√3x^2 - 5x - 1√x^2 - 3x + 4 + x^2 - 6x + 9
Rút gọn và sắp xếp lại các thành phần của phương trình, ta được:
(2√3 + 2)√x^2 - 2 - (2√3 + 2)√x^2 - 3x + 4 = -2x + 7
Tiếp theo, ta sẽ loại bỏ các căn bậc hai:
-2√3 - 2 = -2x + 7
Tiếp tục rút gọn và giải phương trình, ta được:
-2√3 = -2x + 9
2x = 9 + 2√3
x = (9 + 2√3) / 2
Vậy, giá trị của x là (9 + 2√3) / 2.
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)