Cho x > 0. Tìm GTNN của \(P=x^2-x+\dfrac{9}{2x}+\dfrac{61}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :
\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\) ≥ \(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)
⇒ \(P_{MIN}=196."="\) ⇔ \(x=y=z=\dfrac{1}{3}\)
Ta có: \(\left(x-1\right)^2+\left(x+y\right)^2\le9\Rightarrow x+y\le3\).
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{2}{x}+2x\ge2\sqrt{\dfrac{2}{x}.2x}=4;\dfrac{4}{y}+y\ge2\sqrt{\dfrac{4}{y}.y}=4\).
Do đó \(\dfrac{2}{x}\ge4-2x;\dfrac{4}{y}\ge4-y\)
\(\Rightarrow P\ge8-4\left(x+y\right)\ge-4\). (do \(x+y\le3\)).
Vậy...
Đẳng thức xảy ra khi và chỉ khi x = 1; y = 2.
b: 2x-3<0
=>2x<3
hay x<3/2
c: \(\left(2x-4\right)\left(9-3x\right)>0\)
=>(x-2)(x-3)<0
=>2<x<3
d: \(\dfrac{2}{3}x-\dfrac{3}{4}>0\)
=>2/3x>3/4
hay x>9/8
Áp dụng BĐT cosi:
\(A=\left(3x+\dfrac{3}{x}\right)+\left(\dfrac{4}{9}y+\dfrac{4}{y}\right)+\left(2x+y\right)\\ A\ge2\sqrt{\dfrac{9x}{x}}+2\sqrt{\dfrac{16y}{9y}}+5\\ A\ge2\cdot3+2\cdot\dfrac{4}{3}+5=\dfrac{41}{3}\)
Vậy \(A_{min}=\dfrac{41}{3}\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{3}{x}\\\dfrac{4y}{9}=\dfrac{4}{y}\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
\(S=x^2+\frac{9}{4}-x+\frac{9}{2x}+13\)
\(S\ge3x-x+\frac{9}{2x}+13=2x+\frac{9}{2x}+13\)
\(S\ge2\sqrt{\frac{18x}{2x}}+13=19\)
\(S_{min}=19\) khi \(x=\frac{3}{2}\)
\(P=\dfrac{2x}{\sqrt{x}-2}=\dfrac{2x-8+8}{\sqrt{x}-2}=\dfrac{2\left(x-4\right)}{\sqrt{x}-2}+\dfrac{8}{\sqrt{x}-2}=2\left(\sqrt{x}+2\right)+\dfrac{8}{\sqrt{x}-2}=2\left(\sqrt{x}-2\right)+\dfrac{8}{\sqrt{x}-2}+8\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(2\left(\sqrt{x}-2\right)+\dfrac{8}{\sqrt{x}-2}\ge2\sqrt{2\left(\sqrt{x}-2\right).\dfrac{8}{\sqrt{x}-2}}=2.\sqrt{16}=2.4=8\)
\(\Leftrightarrow2\left(\sqrt{x}-2\right)+\dfrac{8}{\sqrt{x}-2}+8\ge8+8=16\)
\(\Rightarrow P_{Min}=16."="\Leftrightarrow x=16\left(TM\right)\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
@Akai Haruma@Thiên Thảo@Guyo@Nguyễn Văn Toàn@Sky SơnTùng