K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

\(a,\) Ta có : \(\hept{\begin{cases}2^{10}=2^{10}\\3^{12}=3^{10}.3^2\end{cases}}\)

Vì \(3^{10}>2^{10}\Rightarrow2^{10}< 3^{10}.3^2\)

Hay \(2^{10}< 3^{12}\)

\(b,\)  Ta có : \(\hept{\begin{cases}33^{52}=\left(33^4\right)^{13}=1185921^{13}\\44^{39}=\left(44^3\right)^{13}=85184^{13}\end{cases}}\)

Vì \(1185921^{13}>85184^{13}\)

Do đó : \(33^{52}>44^{39}\)

15 tháng 3 2020

Ta có : 

\(33^{52}=\left(33^4\right)^{13}=\left[\left(3.11\right)^4\right]^{13}=\left(3^4.11^4\right)^{13}=\left(11^3.891\right)^{13}\)

\(44^{39}=\left(44^3\right)^{13}=\left[\left(11.4\right)^3\right]^{13}=\left(11^3.4^3\right)^{13}=\left(11^3.64\right)^{13}\)

Do 891 > 64 => 33^52 > 44^39

20 tháng 3 2020

3352 lớn hơn 4439 

10 tháng 9 2017

\(3^{-200}=\left(3^{-2}\right)^{100}=\left(\frac{1}{9}\right)^{100}\)

\(2^{-300}=\left(2^{-3}\right)^{100}=\left(\frac{1}{8}\right)^{100}\)

\(\frac{1}{9}< \frac{1}{8}\Rightarrow\left(\frac{1}{9}\right)^{100}< \left(\frac{1}{8}\right)^{100}\Rightarrow3^{-200}< 2^{-300}\)

\(33^{52}=\left(33^4\right)^{13}\)

\(44^{39}=\left(44^3\right)^{13}\)

\(33^4=\left(33^{\frac{4}{3}}\right)^3\approx106^3\)

\(106^3>44^3\Rightarrow\left(33^4\right)^{13}> \left(44^3\right)^{13}\Rightarrow33^{52}>44^{39}\)

giải 

a)3^-200<2^-300

b)33^52>44^39

3 tháng 8 2017

3352<4439

10 tháng 10 2023

loading...  loading...  loading...  

24 tháng 12 2024

42:x=6

x= 42 :6 

X= 7

TH 2

36:x = 6

X = 36: 6

X= 6

3^-200=3^(-2x100) 

2^-300=2^(-3x100)

=2^-300>3^-200

chúc bn học tốt

a, 3^(−200) và 2^(−300)

Ta có :

3^(−200) =(3^−2)^100=(1/9)^100

2^(−300) =(2^−3)^100=(1/8)^100

Do 1/9<1/8 nên 3^(−200) < 2^(−300)

b, 33^52 và 44^39 

Ta có :

33^52 = ( 33^4)^13

44^39 = ( 44^3 )^13

33^4 = ( 33 4/3 )^3 = 106^3

106^3 > 44^3 ⇒ ( 33^4)^13 > ( 44^3 )^13 ⇒ 33^52 >44^39

#Học tốt#

             

10 tháng 9 2017

22^3^2 : 33^2^3 = 22/33

22/33 = 2/3

vậy 22^3^2 = 2/3 x 33^2^3

suy ra 22^3^2 < 33^2^3