Tìm m để đường thẳng y=x+m cắt đồ thị hàm số \(y=\dfrac{2x}{x+1}\) tại 2 điểm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương trình hoành độ giao điểm x + m = 2 x x + 1 x ≠ − 1 ⇔ x 2 + m + 1 x + m ∀ x ≠ 1 = 2 x
⇔ x 2 + m − 1 x + m = 0 x ≠ − 1 Để d cắt đồ thị hàm số y = 2 x x + 1 tại 2 điểm phân biệt ⇔ g x = x 2 + m − 1 x + m = 0 có 2 nghiệm phân biệt khác .
Khi đó g − 1 = 2 ≠ 0 Δ = m − 1 2 − 4 m > 0 ⇒ m > 3 + 2 2 m < 3 − 2 2
Đáp án C
Phương trình hoành độ giao điểm là: 2 x − 1 2 x + 1 − 2 m x + m + 1 ⇔ x ≠ − 1 2 g x = 4 m x 2 + 4 m x + m + 2 = 0
⇔ m ≠ 0 Δ ' = 4 m 2 − 4 m m + 2 > 0 g − 1 2 ≠ 0 ⇔ m < 0
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
Phương trình hoành độ giao điểm:
\(x+m=\dfrac{2x}{x+1}\Leftrightarrow\left(x+m\right)\left(x+1\right)-2x=0\)
\(\Leftrightarrow x^2+\left(m-1\right)x+m=0\)
\(\Delta=\left(m-1\right)^2-4m=m^2-6m+1>0\)
\(\Rightarrow\left[{}\begin{matrix}m< 3-2\sqrt{2}\\m>3+2\sqrt{2}\end{matrix}\right.\)