Cho hình chữ nhật ABCD (AB > BC) , E là điểm trên cạnh AB sao cho AD = AE . Kẻ EF vuông góc với CD tại F , kẻ BH vuông góc với BF tại điểm H.
a) Tứ giác AEFD là hình gì? Vì sao?
b) Chứng minh AH \(\perp\)HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BCEQ có
H là trung điểm của BE
H là trung điểm của CQ
Do đó: BCEQ là hình bình hành
a: Xét tứ giác AKCI có
AK//CI
AI//CK
Do đó: AKCI là hình bình hành
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ADHE là hình chữ nhật
=>AD//HE và AD=HE
Ta có: AD//HE
F\(\in\)HE
Do đó: AD//HF
Ta có: AD=HE
HE=EF
Do đó: AD=EF
Xét tứ giác ADEF có
AD//EF
AD=EF
Do đó: ADEF là hình bình hành
c: ta có: AEHD là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{ACB}\right)\)
nên \(\widehat{AED}=\widehat{ABC}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{AED}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM\(\perp\)ED
mà ED//AF(ADEF là hình bình hành)
nên AM\(\perp\)AF
a) Tứ giác ADHE là hình chữ nhật.
- Vì AD vuông góc với AB và HE vuông góc với AC (do HD và HE lần lượt là đường cao của tam giác ABC), nên ADHE là hình chữ nhật.
b) Lấy điểm F sao cho E là trung điểm của HF.
- Vì E là trung điểm của HF, nên EF = FH.
- Ta cũng có HE = EA (do E là trung điểm của HF và EA).
- Từ đó, ta có EF = FH = HE = EA.
- Vậy, tứ giác ADEF có các cạnh đối diện bằng nhau, là đặc điểm của hình bình hành.
c) Gọi M là trung điểm của BC. Chúng ta cần chứng minh AM vuông góc với AF.
- Ta biết rằng E là trung điểm của HF (theo phần b).
- Vì M là trung điểm của BC, nên BM = MC.
- Từ đó, ta có AM = BM = MC.
- Vì EF = FH = HE = EA (theo phần b), nên tứ giác ADEF là hình bình hành.
- Do đó, ta có AF song song với DE.
- Vì AM = MC và AF song song với DE, nên AM vuông góc với AF.
Vậy, ta đã chứng minh được AM vuông góc với AF.