Tìm nghiệm nguyên của các phương trình sau
\(a,x^2+y^2+xy+3x-3y+9\)\(=0\)
\(b,x^2-4x-2y+xy+1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4x+2y-xy+9=0\)
\(\Leftrightarrow x^2-4x+4+2y-xy+5=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)y+5=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-y\right)=-5\)
⇒\(\left[{}\begin{matrix}\left(x-2\right)\left(x-2-y\right)=-5\cdot1\left(1\right)\\\left(x-2\right)\left(x-2-y\right)=-1\cdot5\left(2\right)\end{matrix}\right.\)
Vì đề kêu tìm nghiệm nguyên nên ta có
Th1:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-5\\x-2-y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\x-2-y=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\end{matrix}\right.\)
Th2:\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-1\\x-2-y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=5\\x-2-y=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=7\\y=6\end{matrix}\right.\end{matrix}\right.\)
Vậy .....
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
a, \(xy+4x-2y=2\)
\(\Rightarrow y\left(x-2\right)+4\left(x-2\right)=-6\)
\(\Rightarrow\left(x-2\right)\left(y+4\right)=-6\)
\(x-2\) | 1 | -6 | -1 | 6 | 2 | -3 | -2 | 3 |
\(y+4\) | -6 | 1 | 6 | -1 | -3 | 2 | 3 | -2 |
\(x\) | 3 | -4 | 1 | 8 | 4 | -1 | 0 | 5 |
\(y\) | -10 | -3 | 2 | -5 | -7 | -2 | -1 | -6 |
Lời giải:
a. Bạn xem lại đề. $2y-3y$ hay $2x-3y$ hay $2y-3x$?
b. $2xy-y-x=1$
$\Leftrightarrow y(2x-1)-x=1$
$\Leftrightarrow 2y(2x-1)-2x=2$
$\Leftrightarrow 2y(2x-1)-(2x-1)=3$
$\Leftrightarrow (2x-1)(2y-1)=3$
Do $x,y$ là số nguyên nên $2x-1,2y-1$ cũng là số nguyên. Ta có các TH sau:
TH1: $2x-1=1, 2y-1=3\Rightarrow x=1; y=2$
TH2: $2x-1=3; 2y-1=1\Rightarrow x=2; y=1$
TH3: $2x-1=-1; 2y-1=-3\Rightarrow x=0; y=-1$
TH4: $2x-1=-3; 2y-1=-1\Rightarrow x=-1; y=0$
b ) x2 - 4x - 2y + xy + 1 = 0
( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0
( x - 2 )2 - y ( 2 - x ) = 3
( 2 - x ) ( 2 - x - y ) = 3
đến đây lập bảng tìm ra x,y
a) x2 + y2 + xy + 3x - 3y + 9 = 0
2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0
( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0
( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0
\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0
\(\Rightarrow\)x = -3 ; y = 3