Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{-3}{5}x+\dfrac{-7}{4}=\dfrac{3}{10}\)
\(\Leftrightarrow\dfrac{-3}{5}x=\dfrac{3}{10}+\dfrac{7}{4}=\dfrac{41}{20}\)
\(\Leftrightarrow x=\dfrac{41}{20}:\dfrac{-3}{5}=\dfrac{41}{20}\cdot\dfrac{-5}{3}\)
hay \(x=-\dfrac{41}{12}\)
Vậy: \(x=-\dfrac{41}{12}\)
\(1\)) \(5-\left(10-x\right)=7\)
\(10-x=5-7\)
\(10-x=-2\)
\(x=10-\left(-2\right)\)
\(x=12\)
\(2\)) \(-32-\left(x-5\right)=0\)
\(x-5=-32-0\)
\(x-5=-32\)
\(x=-32+5\)
\(x=-27\)
a: =2/5-3/5+3/7=3/7-1/5
=15/35-7/35
=8/35
b: =>5/7:x=4/3
=>x=5/7:4/3=5/7*3/4=15/28
c: =>x-1/3=15/8:4/5=15/8*5/4=75/32
=>x=75/32+1/3=257/96
d: =>2x+1/8=2/7
=>2x=9/56
=>x=9/112
e: =>2x=10/3-5/4-3/4=10/3-2=4/3
=>x=2/3
\(a,\dfrac{2}{5}+\dfrac{3}{7}+\left(-\dfrac{3}{5}\right)\\ =\dfrac{2}{5}+\dfrac{3}{7}-\dfrac{3}{5}\\=\left(\dfrac{2}{5}-\dfrac{3}{5}\right)+\dfrac{3}{7}\\ =-\dfrac{1}{5}+\dfrac{3}{7}\\ =-\dfrac{7}{35}+\dfrac{15}{35}\\ =\dfrac{8}{35}\\ b,1-\dfrac{5}{7}:x=-\dfrac{1}{3}\\ =>\dfrac{5}{7}:x=1-\left(-\dfrac{1}{3}\right)\\ =>\dfrac{5}{7}:x=1+\dfrac{1}{3}\\ =>\dfrac{5}{7}:x=\dfrac{3}{3}+\dfrac{1}{3}\\ =>\dfrac{5}{7}:x=\dfrac{4}{3}\\ =>x=\dfrac{5}{7}:\dfrac{4}{3}\\ =>x=\dfrac{5}{7}.\dfrac{3}{4}\\ =>x=\dfrac{15}{28}\\ c,\dfrac{4}{5}\left(x-\dfrac{1}{3}\right)=\dfrac{15}{8}\\ =>x-\dfrac{1}{3}=\dfrac{15}{8}:\dfrac{4}{5}\\ =>x-\dfrac{1}{3}=\dfrac{15}{8}.\dfrac{5}{4}\\ =>x-\dfrac{1}{3}=\dfrac{75}{32}\\ =>x=\dfrac{75}{32}+\dfrac{1}{3}\\ =>x=\dfrac{257}{96}\)
\(d,\dfrac{2}{3}:\left(2x+\dfrac{1}{8}\right)=\dfrac{7}{3}\\ =>2x+\dfrac{1}{8}=\dfrac{2}{3}:\dfrac{7}{3}\\ =>2x+\dfrac{1}{8}=\dfrac{2}{3}.\dfrac{3}{7}\\ =>2x+\dfrac{1}{8}=\dfrac{2}{7}\\ =>2x=\dfrac{2}{7}-\dfrac{1}{8}\\ =>2x=\dfrac{16}{56}-\dfrac{7}{56}\\ =>2x=\dfrac{9}{56}\\ =>x=\dfrac{9}{56}:2\\ =>x=\dfrac{9}{112}\\ e,2x+\dfrac{3}{4}=\dfrac{10}{3}-\dfrac{5}{4}\\ =>e,2x+\dfrac{3}{4}=\dfrac{40}{12}-\dfrac{15}{12}\\ =>2x+\dfrac{3}{4}=\dfrac{25}{12}\\ =>2x=\dfrac{25}{12}-\dfrac{3}{4}\\ =>2x=\dfrac{25}{12}-\dfrac{9}{12}\\ =>2x=\dfrac{16}{12}\\ =>2x=\dfrac{4}{3}\\ =>x=\dfrac{4}{3}:2\\ =>x=\dfrac{4}{6}\\ =>x=\dfrac{2}{3}\)
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
\(\left(\frac{3}{4}\right)^{2.x}:\left(\frac{2}{5}\right)^{10}=\left(\frac{15}{8}\right)^{10}\)
\(\left(\frac{3}{4}\right)^{2.x}=\left(\frac{15}{8}\right)^{10}.\left(\frac{2}{5}\right)^{10}\)
\(\left(\frac{3}{4}\right)^{2.x}=\left(\frac{15}{8}.\frac{2}{5}\right)^{10}\)
\(\left(\frac{3}{4}\right)^{2.x}=\left(\frac{3}{4}\right)^{10}\)
\(\Rightarrow2.x=10\Rightarrow x=5\)
\(\left(\frac{3}{4}\right)^{2x}\div\left(\frac{2}{5}\right)^{10}=\left(\frac{15}{8}\right)^{10}\)
\(\left(\frac{3}{4}\right)^{2x}=\left(\frac{15}{8}\right)^{10}\times\left(\frac{2}{5}\right)^{10}\)
\(\left(\frac{3}{4}\right)^{2x}=\left(\frac{15}{8}\times\frac{2}{5}\right)^{10}\)
\(\left(\frac{3}{4}\right)^{2x}=\left(\frac{3}{4}\right)^{10}\)
\(\Rightarrow\)\(2x=10\)
\(\Rightarrow\)\(x=5\)