tim x
a,(x+2)^2-3x=5+x^2
b,|x+2|=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(4x\left(x-7\right)-4x^2=56\)
\(\Leftrightarrow4x^2-7x-4x^2=56\)
hay x=-8
b: Ta có: \(12x\left(3x-2\right)-\left(4-6x\right)=0\)
\(\Leftrightarrow36x^2-24x-4+6x=0\)
\(\Leftrightarrow36x^2-18x-4=0\)
\(\text{Δ}=\left(-18\right)^2-4\cdot36\cdot\left(-4\right)=900\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{18-30}{72}=\dfrac{-1}{6}\\x_2=\dfrac{18+30}{72}=\dfrac{2}{3}\end{matrix}\right.\)
c: Ta có: \(4\left(x-5\right)-\left(x-5\right)^2=0\)
\(\Leftrightarrow\left(x-5\right)\left(4-x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=9\end{matrix}\right.\)
b: Ta có: \(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x+4-2x-7\right)\left(3x+4+2x+7\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{5}\end{matrix}\right.\)
c: ta có: \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow\left(3x-6\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-6-x-2\right)\left(3x-6+x+2\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
2a) pt <=> (x + 6)^2 = 0
<=> x = -6
b) pt <=> (4x - 1)^2 = 0
<=> x = 1/4
c) pt<=> (x + 1)^3 = 0
<=> x = -1
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
Bài 2:
a: Ta có: \(x^2+12x+36=0\)
\(\Leftrightarrow x+6=0\)
hay x=-6
b: Ta có: \(16x^2-8x+1=0\)
\(\Leftrightarrow4x-1=0\)
hay \(x=\dfrac{1}{4}\)
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)
\(=\left(x+2y+x-2y\right)^2\)
\(=4x^2\)
\(a,x=\dfrac{1}{2}-\dfrac{2}{5}\)
\(x=\dfrac{1}{10}\)
\(b,x+\dfrac{3}{7}=\dfrac{7}{10}\)
\(x=\dfrac{7}{10}-\dfrac{3}{7}\)
\(x=\dfrac{19}{70}\)
\(c,19-x=\dfrac{17}{20}\)
\(x=19-\dfrac{17}{20}\)
\(x=\dfrac{363}{20}\)
\(a,2\left(x-1\right)\left(x+1\right)+\left(x-1\right)^2+\left(x+1\right)^2\)
\(=2\left(x^2-1\right)+x^2-2x+1+x^2+2x+1\)
\(=2x^2-2+2x^2+2=4x^2\)
\(b,\left(x-y+1\right)^2+\left(1-y\right)^2+2\left(x-y+1\right)\left(y-1\right)\)
\(=\left(x-y+1\right)^2+2\left(x-y+1\right)\left(y-1\right)+\left(y-1\right)^2\)
\(=\left[\left(x-y+1\right)+\left(y-1\right)\right]^2\)
\(=\left[x-y+1+y-1\right]^2=x^2\)
đề cuối phải sửa cái cuối thành \(\left(3x+5\right)^2\)
\(c,\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2=\left[3x+1-3x-5\right]^2=16\)
Bài 1:
\(a,=6x^2+19x-7-6x^3-4x^2+7x=-6x^3+2x^2+26x-7\\ b,B=26\cdot\left(63^2+63\cdot37+37^2\right):26+63\cdot37\\ =63^2+63\cdot37+37^2+63\cdot37\\ =\left(63+37\right)^2=100^2=10000\)
Bài 2:
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=\left(x-y\right)\left(x+2\right)\\ c,=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)
Lời giải:
a.
PT $\Leftrightarrow -5x^2+15x-5+x+5x^2=x-2$
$\Leftrightarrow 16x-5=x-2$
$\Leftrightarrow 15x=3$
$\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}$
b.
PT $\Leftrightarrow -4x^2+20x+7x^2-28x-3x^2=12$
$\Leftrightarrow -8x=12$
$\Leftrightarrow x=\frac{-3}{2}$