K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

a)thiếu đề

b)n(n-1)+1

*)Nếu n=2k(kEZ)

thì n(n-1)+1=2k(2k-1)+1=4k2-2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)

*)Nếu n=2k+1(kEZ)

thì n(n-1)+1=(2k+1)(2k+1-1)+1=(2k+1)(2k)+1=4k2+2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)

Vậy với mọi nEZ thì n(n-1)+1 đều không chia hết cho 2

c)Nếu n=3k(kEZ)

thì (n-1)(n+2+1)=(3k-1)(3k+2+1)=(3k-1)(3k+3)=3k(3k+3)-(3k+3)=9k2-3k-3(chia hết cho 3)

cái này bạn xét tương tự, xét 3k;3k+1;3k+2

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

Tham khảo:1)CMR với mọi số m,n nguyên thì:a)n^2[(n^2)-1] chia hết cho 12?

A = n²(n²-1) 
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3 
=> n²(n²-1) chia hết cho 3 
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4 
=> n²(n²-1) chia hết cho 4 
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12 

24 tháng 7 2021

a) Ta có (n - 1)(n + 1) - (n - 7)(n - 5) 

= n2 - 1 - (n2 - 12n + 35)

= n2 - 1 - n2 + 12n - 35

= 12n - 36 = 12(n - 3) \(⋮12\forall n\inℤ\)

b) Ta có n(2n - 3) - 2n(n + 2) 

= 2n2 - 3n - 2n2 - 2n 

= - 5n \(⋮5\forall n\inℤ\)

29 tháng 5 2016

bài này mà là tón 8 á?mik nghĩ là toán 6