a,(x-\(\frac{1}{2}\)).1+5x=0
b,\(\frac{37-x}{x+13}\)\(=\)\(\frac{3}{7}\)
Mình đang cần gấp !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x^2+5x}{5x^2+x^3}\)
\(=\frac{x\left(x+5\right)}{x^2\left(x+5\right)}=\frac{1}{x}\)
b) \(\frac{x^4+x^2+1}{x^3+1}\)
\(=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^2+x+1}{x+1}\)
\(a)\frac{x^2+5x}{5x^2+x^3}=\frac{x\left(x+5\right)}{x^2\left(5+x\right)}=\frac{1}{x}\)
Bài 2
a. \(-1\frac{2}{3}-|2x-1|:\frac{3}{5}=-2\)
\(|2x-1|:\frac{3}{5}=\frac{5}{3}-2\)
\(|2x-1|:\frac{3}{5}=-\frac{1}{3}\)
\(|2x-1|=-\frac{1}{5}\)
Vì giá trị tuyệt đối luôn \(\ge0\)với mọi x
mà \(-\frac{1}{5}< 0\)
=> \(x\in\varnothing\)
\(\frac{4}{7}=\frac{7}{x^2}\)
\(\Leftrightarrow4x^2=7.7\)
\(\Leftrightarrow\left(2x\right)^2=49\)
\(\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}\)
a) \(\frac{x-1}{6}=\frac{2x+3}{7}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(2x+3\right)\)
\(\Leftrightarrow7x-7=12x+18\)
\(\Leftrightarrow5x+18=-7\)
\(\Leftrightarrow5x=-25\)
\(\Leftrightarrow x=-5\)
b) \(\left(2x^2-\frac{1}{2}x\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{2}\right)\left(x^2+1\right)=0\)
Vì \(x^2+1>0\)nên \(\orbr{\begin{cases}x=0\\2x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)
Giải tiêu biểu câu a nhé.
a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)
\(\Leftrightarrow19x+5=0\)
\(\Leftrightarrow x=-\frac{5}{19}\)
Bài 1:
\(4.\left(\frac{-1}{2}\right)^2-2.\left(\frac{-1}{2}\right)^2+3.\left(\frac{-1}{2}\right)+1\)
\(=4.\frac{1}{4}-2.\frac{1}{4}+3.\left(\frac{-1}{2}\right)+1\)
\(=1-\frac{1}{2}-\frac{3}{2}+1\)
\(=0\)
Bài 2:
a) \(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow259-39=3x+7x\)
\(\Rightarrow220=10x\)
\(\Rightarrow x=22\)
d) \(\frac{3^2.3^8}{27^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)
\(\frac{\Rightarrow3^{10}}{3^9}=3^x\)
\(\Rightarrow3=3^x\)
\(\Rightarrow x=1\)
Hok tốt nha^^
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}+\frac{-\left(x+3\right)}{x-2}-\frac{2x+1}{x-3}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}+\frac{-\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(2x-9\right)-\left(x^2-9\right)+\left(2x^2-3x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9-x^2+9+2x^2-3x-2}{\left(x-2\right)\left(x-3\right)}=\frac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+1}{x-3}\)
b) \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{x+1}{x-3}=\frac{1}{2}\)\(\Leftrightarrow2\left(x+1\right)=x-3\)
\(\Leftrightarrow2x+2=x-3\)\(\Leftrightarrow2x-x=-3-2\)
\(\Leftrightarrow x=-5\)
Vậy \(A=\frac{1}{2}\Leftrightarrow x=-5\)
c) Xem lại đề