K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF(1)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=BH\cdot CH\left(2\right)\)

Từ (1) và (2) suy ra \(FE^2=BH\cdot CH\)

28 tháng 9 2021

28 tháng 9 2021

undefined

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

a: BC=15cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

13 tháng 5 2023

a.

Vì  ΔABC vuông tại A nên theo định lí Py - ta - go:

 BC2 = AB2 + AC2

 BC2 = 92 + 122

\(\Rightarrow\) BC2 = 225

\(\Rightarrow\) BC2 = \(\sqrt{225}\) = 15 cm

b. Xét  ΔABC và  Δ HBA:

      \(\widehat{A}=\widehat{H}\) = 900 (gt)

       \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\)  Δ HBA (g.g)

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

c: AD là phân giác

=>AD/DC=BA/BC=AH/AC

=>AD*AC=AH*DC

18 tháng 3 2021

Tam giác ABC vuông tại A. Áp dụng Pitago

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow9^2+12^2=BC^2\)

\(\Rightarrow BC=15\)

Xét tam giác ABC và tam giác AHC ta có:

Góc C: chung

Góc BAC = Góc AHC (=900)

=> Tam giác ABC ~ Tam giác HAC (g - g)

\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\Rightarrow\dfrac{12}{HC}=\dfrac{15}{12}=\dfrac{5}{4}\)

\(\Rightarrow HC=12:\dfrac{5}{4}=12.\dfrac{4}{5}=9,6\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

28 tháng 12 2021

Giúp mik câu c với ạ

 

28 tháng 12 2021

a: BC=15cm

AH=7,2cm

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA