K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2015

5a8b chia hết cho 9. Vậy (5+ a+ 8+ b) chia hết cho 9

                                     (13+ a+ b) chia hết cho 9

13+ a+ b= 18 hoặc 13+ a+ b= 27

+ Nếu 13+ a+ b= 27 thì a+ b= 14

Vì a và b là các chữ số tự nhiên nên giả thiết này sai.

Vậy 13+ a+ b= 18

             a+ b= 5

Số a là: (5+ 3): 2= 4

Số b là: 5- 4= 1

=> a= 4; b= 1

 

17 tháng 8 2016

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

17 tháng 8 2016

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

15 tháng 7 2015

a) NHận thấy:

102:12=8 dư 6

Vậy q=8;r=6 để 102=12x8+6

b)  Nhận thấy:  

a=12x3+5

a=36+5

a=41

c)  không biết làm

d)  Ta có:

51-0=bxq

51=bxq

Mà 51=17x3

   =1x51

Suy ra b=17 thì q=3

           q=17 thì b=3

b=51 thì q=1

q=51 thì b=1

 

15 tháng 7 2015

a) Từ \(a=b.q+r\) nên \(q=a:b\) và r là số dư của phép chia này

 q = 102 : 12 = 8 (dư r = 6)

b), c) d) tương tự thế mà làm nhé !

25 tháng 6 2023

a) Thay \(b=a-1\) vào hệ thức thứ hai thì được \(a-1+c=a+4\) hay \(c=5\). Hơn nữa, ta thấy \(a>b\) nên \(b\) không thể là độ dài của cạnh huyền của tam giác vuông được. Sẽ có 2 trường hợp:

 TH1: \(a\) là độ dài cạnh huyền. Khi đó theo định lí Pythagoras thì \(b^2+c^2=a^2\) \(\Rightarrow b^2+25=\left(b+1\right)^2\) \(\Leftrightarrow b^2+25=b^2+2b+1\) \(\Leftrightarrow2b=24\) \(\Leftrightarrow b=12\), suy ra \(a=13\). Vậy \(\left(a,b,c\right)=\left(13,12,5\right)\)

 TH2: \(c\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras thì \(a^2+b^2=c^2\) \(\Leftrightarrow\left(b+1\right)^2+b^2=25\) \(\Leftrightarrow2b^2+2b-24=0\) \(\Leftrightarrow b^2+b-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=3\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a=b+1=4\). Vậy \(\left(a,b,c\right)=\left(4,3,5\right)\)

  Như vậy, ta tìm được \(\left(a,b,c\right)\in\left\{\left(13,12,5\right);\left(4,3,5\right)\right\}\)

b) Bạn không nói rõ b', c' là gì thì mình không tính được đâu. Mình tính b, c trước nhé.

 Do \(b:c=3:4\) nên rõ ràng \(c>b\). Vì vậy \(b\) không thể là độ dài cạnh huyền được. Sẽ có 2TH

 TH1: \(c\) là độ dài cạnh huyền. Khi đó theo định lý Pythagoras thì \(a^2+b^2=c^2\). Do \(b:c=3:4\) nên \(b=\dfrac{3}{4}c\). Đồng thời \(a=125\) \(\Rightarrow125^2+\left(\dfrac{3}{4}c\right)^2=c^2\) \(\Rightarrow\dfrac{7}{16}c^2=125^2\) \(\Leftrightarrow c=\dfrac{500}{\sqrt{7}}\) \(\Rightarrow b=\dfrac{375}{\sqrt{7}}\). Vậy \(\left(b,c\right)=\left(\dfrac{375}{\sqrt{7}},\dfrac{500}{\sqrt{7}}\right)\)

 TH2: \(a\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras, ta có \(b^2+c^2=a^2=125^2\). Lại có \(b:c=3:4\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{b^2+c^2}{25}=\dfrac{125^2}{25}=625\)

\(\Rightarrow b^2=5625\Rightarrow b=75\) \(\Rightarrow c=100\). Vậy \(\left(b,c\right)=\left(75,100\right)\)

Như vậy, ta tìm được \(\left(b,c\right)\in\left\{\left(75,100\right);\left(\dfrac{350}{\sqrt{7}};\dfrac{500}{\sqrt{7}}\right)\right\}\)

 

 

26 tháng 1 2021

Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2) 

\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)

Thay lại vào (1) ; (2) ta có : 

\(\Leftrightarrow a=11-b=11-7=4\)

\(\Leftrightarrow c=3-b=3-7=-4\)

Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện ) 

26 tháng 1 2021
a a + b + b + c + a + c = 11 + 3 + 2 2a + 2b + 2c = 16 a + b + c = 8 Mà a + b = 11 Suy ra c = - 3 b + c = 3 Vậy b = 6 c + a = 2 a = 5 Vậy a = 5 ; b = 6 ; c = -3 b a + b + c + a + b + d + a + c + d = 4 + 3 + 2 a + 2a + 2b + 2c + 2d = 9 Mà a + b + c + d = 1 Suy ra a + 2 = 9 a = 7 a + c + d = 2 c + d = -5 a + b + d = 3 b + d = -4 a + b + c = 4 b + c = -3 b + c + c + d + d + b = -5 + -4 + -3 2b + 2c + 2d = -12 b + c + d = -6 b + c = -3 d = -3 c + d = -5 c = -2 b + d = -4 b = -1 Vậy a = 7 ; b = -1 ; c = -2 ; d = -3
3 tháng 1 2016

1.3+(-2)+x=5

-1+x=5

x=5-(-1)

x=6

Nhớ tick cho mình nha

 

 

11 tháng 4 2015

abc:(a+b+c)=100

aba=(a+b+c)x100

abc=a x100+bx100+cx100

ax100+bx10+c=ax100+bx100+cx100

( đề có vẻ sai )

 

23 tháng 3 2022

abc:(a+b+c)=100

aba=(a+b+c)x100

abc=a x100+bx100+cx100

ax100+bx10+c=ax100+bx100+cx100

( đề có vẻ sai ) Nếu bn cảm thấy đúng thì k cho mình nhé!Học Tốt