K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

\(\Leftrightarrow x\left(x^4-9\right)=0\\ \Leftrightarrow x\left(x^2-3\right)\left(x^2+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=3\\x^2=-3\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

1 tháng 11 2021

Hình như sai đề 

1 tháng 11 2021

Sai ở đâu ??

\(\left(5-x\right)\left(9x^2-4\right)=0\)

=>\(\left(x-5\right)\left(3x-2\right)\left(3x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-5=0\\3x-2=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

8 tháng 12 2023

\(\left(5-x\right)\left(9x^2-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:
a. $x^2-4x-5=0$
$\Leftrightarrow (x+1)(x-5)=0$

$\Leftrightarrow x+1=0$ hoặc $x-5=0$

$\Leftrightarrow x=-1$ hoặc $x=5$

b. 

$5x^2-9x-2=0$
$\Leftrightarrow (x-2)(5x+1)=0$

$\Leftrightarrow x-2=0$ hoặc $5x+1=0$

$\Leftrightarrow x=2$ hoặc $x=\frac{-1}{5}$

c.

$(x^2+1)-5(x^2+1)+6=0$

$\Leftrightarrow a^2-5a+6=0$ (đặt $x^2+1=a$)

$\Leftrightarrow (a-2)(a-3)=0$

$\Leftrightarrow a-2=0$ hoặc $a-3=0$

$\Leftrightarrow x^2-1=0$ hoặc $x^2-2=0$

$\Leftrightarrow (x-1)(x+1)=0$ hoặc $(x-\sqrt{2})(x+\sqrt{2})=0$

$\Leftrightarrow x\in\left\{\pm 1; \pm \sqrt{2}\right\}$

d.

$(x^2+6x)-2(x+3)^2-17=0$

$\Leftrightarrow (x^2+6x+9)-2(x+3)^2-26=0$

$\Leftrightarrow (x+3)^2-2(x+3)^2-26=0$
$\Leftrightarrow -(x+3)^2-26=0$

$\Leftrightarrow (x+3)^2=-26<0$ (vô lý)

Do đó không tồn tại $x$ thỏa mãn.

17 tháng 11 2021

\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)

\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)

17 tháng 11 2021

\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)

\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)

8 tháng 10 2021

\(a,\Leftrightarrow2x^2-10x-2x^2-x=-11\\ \Leftrightarrow-11x=-11\Leftrightarrow x=1\\ b,\Leftrightarrow x\left(x^2-6x+9\right)=0\\ \Leftrightarrow x\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-2018\right)-2017\left(x-2018\right)=0\\ \Leftrightarrow\left(x-2017\right)\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2018\end{matrix}\right.\)

14 tháng 7 2018

\(a,9x^2-6x-3=0\)

\(\Leftrightarrow9x^2-6x+1-4=0\)

\(\Leftrightarrow\left(3x-1\right)^2=4\)

\(\Rightarrow3x-1=\pm2\)

\(\hept{\begin{cases}3x-1=2\Rightarrow x=1\\3x-1=-2\Rightarrow x=\frac{-1}{3}\end{cases}}\)

Vậy \(x=1\) hoặc \(x=\frac{-1}{3}\)

\(b,x^3+9x^2+27x+19=0\)

\(\Leftrightarrow x^3+9x^2+27x+27-8=0\)

\(\Leftrightarrow\left(x+3\right)^3=8\)

\(\Rightarrow x+3=2\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

\(c,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=3\)

\(\Leftrightarrow x^3-25x-x^3-8=3\)

\(\Leftrightarrow-25x=11\)

\(\Leftrightarrow x=\frac{-11}{25}\)

Vậy \(x=\frac{-11}{25}\)

14 tháng 7 2018

\(9x^2-6x-3=0\)

<=> \(\left(3x\right)^2-2.3x.1+1-4=0\)

<=> \(\left(3x-1\right)^2-2^2=0\)

<=> \(\left(3x-3\right)\left(3x+1\right)=0\)

<=> \(\hept{\begin{cases}3x-3=0\\3x+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)

\(x^3+9x^2+27x+19\) \(=0\)

<=>\(x^3+x^2+8x^2+8x+19x+19=0\)

<=> \(x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)

<=> \(\left(x^2+8x+19\right)\left(x+1\right)=0\)

mà \(x^2+8x+19>0\)

=> \(x+1=0\)

<=> \(x=-1\)

\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

<=> \(x\left(x^2-25\right)-\left(x+2\right)\left(x-2\right)^2=3\)

<=> \(x^3-25x-\left(x^2-4\right)\left(x-2\right)=3\)

<=>  \(x^3-25x-\left(x^3-2x^2-4x+8\right)=3\)

<=> \(x^3-25x-x^3+2x^2+4x-8=3\)

<=> \(2x^2-21x-8=3\)

<=> \(2x^2-21x-11=0\)

<=> \(2x^2-22x+x-11=0\)

<=> \(2x\left(x-11\right)+\left(x-11\right)=0\)

<=> \(\left(2x+1\right)\left(x-11\right)=0\)

<=> \(\hept{\begin{cases}2x+1=0\\x-11=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{-1}{2}\\x=11\end{cases}}\)

17 tháng 1 2018

\(x\ge3\text{ với mọi x}\in N\text{ thì thỏa mãn pt:}\left(9x-18\right)\left(x+5\right)>0\)