1.3+2.4+3.5+...............+2013.2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.3 + 2.4 + 3.5 + 4.6 + 5.7 + .. + 2013.2015 = [1.3 + 3.5+..+2013.2015] + [2.4 + 4.6 + .. + 2012.2014] = X + Y
X = 1.3 + 3.5 + 5.7 + .. + 2013.2015
X.6 = 1.3.﴾5 ‐ ﴾‐1﴿﴿ + 3.5.﴾7 ‐ 1﴿ + 5.7.﴾9‐3﴿ + 7.9.﴾11‐5﴿ + .. + 2011.2013.﴾2015‐2009﴿ + 2013.2015.﴾2017‐2011﴿
= ‐﴾‐1﴿.1.3 + 1.3.5 + 3.5.7 ‐ 1.3.5 + 5.7.9 ‐ 3.5.7 + .... = 1.3 + 2013.2015.2017
=> X = 1/6*﴾3 + 2013.2015.2017﴿ = 1363557553
tương tự Y = 2.4 + 4.6 + .. + 2012.2014
Y.6 = 2.4.6 + 4.6.﴾8‐2﴿ +... + 2012.2014.﴾2016‐2010﴿ = 2012.2014.2016
=> Y = 2012.2014.2016/6 = 1361528448
=> A = X + Y = 2725086001
lâu ko làm nên sai hay đúng thì mình ko biết nữa
A = 1.3 + 2.4 + 3.5 + 4.6 + 5.7 + .. + 2013.2015 = [1.3 + 3.5+..+2013.2015] + [2.4 + 4.6 + .. + 2012.2014] = X + Y
X = 1.3 + 3.5 + 5.7 + .. + 2013.2015
X.6 = 1.3.(5 - (-1)) + 3.5.(7 - 1) + 5.7.(9-3) + 7.9.(11-5) + .. + 2011.2013.(2015-2009) + 2013.2015.(2017-2011)
= -(-1).1.3 + 1.3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + .... = 1.3 + 2013.2015.2017
=> X = 1/6*(3 + 2013.2015.2017) = ...
tương tự
Y = 2.4 + 4.6 + .. + 2012.2014
Y.6 = 2.4.6 + 4.6.(8-2) +... + 2012.2014.(2016-2010) = 2012.2014.2016
=> Y = 2012.2014.2016/6 = ...
=> A = X + Y = 2725086001
\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}\)
=\(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{2015}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2016}\right)\)
=\(\frac{3}{4}-\left(\frac{1}{4030}+\frac{1}{4032}\right)\) < \(\frac{3}{4}\)
=> đpcm
\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2013\cdot2015}\right)\)
\(=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{4056196}{2013\cdot2015}\)
\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}\)
\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}\)
\(=\frac{2014\cdot2}{1\cdot2015}\)
\(=\frac{4028}{2015}\)