(1+2+3+4+5+...+99999) có chia hết cho 2 ko? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Mình chỉ làm đc bài 1 thôi nhé)
Bài 1:
A = 1 + 2 + 3 + 4 +...+999
2A= (1+999)+(2+998)+(3+997)+...+(999+1)
Ta nhận thấy các kết quả của các tổng trong ngoặc trên đều bằng 1000 (số chẵn), mà các số chia hết cho 2 là số chẵn, suy ra A chia hết cho 2
Bài 1.
a)Có
b)Không
Bài 2.
bỏ qua
Bài 3.
a) bỏ qua
b) 1212
a) ta có A= 2+2^2+2^3+2^4+2^5+2^6
=2*(1+2+2^2+2^3+2^4+2^5)
=2*63 =2*21*3 CHIA HẾT CHO 3( vì có một thứa số 3 trong tích )
còn lại bạn làm tương tự nha
\(A=4^0+4^1+4^2+4^3+4^4+...+4^9+4^{10}\)
\(=1+\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^9+4^{10}\right)\)
\(=1+4\left(4+1\right)+4^3\left(4+1\right)+...+4^9\left(4+1\right)\)
\(=1+4.5+4^3.5+...+4^9.5\)
Ta thấy A chia 5 dư 1 nên A không chia hết cho 5