Tìm x : a)(2x) ^3=(x+1)^3
b)3 ^x+2=9^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`
`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)
Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{0;2;4;6\right\}\).
(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)
Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)
nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{-2;0;1;3\right\}\).
a: f(x) chia hết cho g(x)
=>x^2-3x-2x+6+3 chia hết cho x-3
=>3 chia hết cho x-3
=>x-3 thuộc {1;-1;3;-3}
=>x thuộc {4;2;6;0}
b: f(x) chia hết cho g(x)
=>2x^3-x^2+6x-3+5 chia hết cho 2x-1
=>5 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;3;-2}
Lời giải:
a.
a. $(x-1)(x+2)-(x-3)(x+1)=5x-3$
$\Leftrightarrow (x^2+x-2)-(x^2-2x-3)=5x-3$
$\Leftrightarrow 3x+1=5x-3$
$\Leftrightarrow 4=2x$
$\Leftrightarrow x=2$
b.
$(2x-1)(x+3)-(x-2)(x+3)=3x+1$
$\Leftrightarrow (2x^2+5x-3)-(x^2-4)=3x+1$
$\Leftrightarrow x^2+5x+1=3x+1$
$\Leftrightarrow x^2+2x=0$
$\Leftrightarrow x(x+2)=0$
$\Leftrightarrow x=0$ hoặc $x=-2$
c.
$x^2(x-1)-x(x-1)(x+1)=0$
$\Leftrightarrow x^2(x-1)-(x^2+x)(x-1)=0$
$\Leftrightarrow (x-1)[x^2-(x^2+x)]=0$
$\Leftrightarrow (x-1)(-x)=0$
$\Leftrightarrow x-1=0$ hoặc $-x=0$
$\Leftrightarrow x=1$ hoặc $x=0$
d.
$4x(x-5)-(2x-3)(2x+3)=9$
$\Leftrightarrow 4x^2-20x-(4x^2-9)=9$
$\Leftrightarrow -20x=0$
$\Leftrightarrow x=0$
a: Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-3\right)\left(x+1\right)=5x-3\)
\(\Leftrightarrow x^2+2x-x-2-x^2-x+3x+3-5x+3=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow2x=4\)
hay x=2
b: Ta có: \(\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=3x+1\)
\(\Leftrightarrow2x^2+6x-x-3-x^2+4-3x-1=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
c: Ta có: \(x^2\left(x-1\right)-x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
d: Ta có: \(4x\left(x-5\right)-\left(2x-3\right)\left(2x+3\right)=9\)
\(\Leftrightarrow4x^2-20x-4x^2+9=9\)
hay x=0
\(a,\Leftrightarrow x^2+2x+1-x^2+3x-2x=3\\ \Leftrightarrow3x=2\Leftrightarrow x=\dfrac{3}{2}\\ b,\Leftrightarrow x^2-x-6-x^2+6x-9=15\\ \Leftrightarrow5x=30\Leftrightarrow x=6\\ c,\Leftrightarrow x^3+3x^2+3x+1-x^3-3x^2-2x+3=0\\ \Leftrightarrow x=-4\)
a) \(\left(x+1\right)^2-x\left(x-3\right)=2x+3\Rightarrow x^2+2x+1-x^2+3x=2x+3\)
\(\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
a: \(-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
=>\(-4x^2+20x-16x+4x^2=-3\)
=>4x=-3
=>\(x=-\dfrac{3}{4}\)
b: \(-7\left(x+9\right)-3\left(5-x\right)=2\)
=>\(-7x-63-15+3x=2\)
=>\(-4x-78=2\)
=>\(-4x=78+2=80\)
=>\(x=\dfrac{80}{-4}=-20\)
\(a,\dfrac{3}{7}-x=\dfrac{1}{2}x-3\)
\(\Rightarrow-x-\dfrac{1}{2}x=-3-\dfrac{3}{7}\)
\(\Rightarrow-\dfrac{3}{2}x=-\dfrac{24}{7}\)
\(\Rightarrow x=-\dfrac{24}{7}:\left(-\dfrac{3}{2}\right)\)
\(\Rightarrow x=\dfrac{16}{7}\)
\(b,5x-\dfrac{2}{3}=\dfrac{5}{3}-2x\)
\(\Rightarrow5x+2x=\dfrac{5}{3}+\dfrac{2}{3}\)
\(\Rightarrow7x=\dfrac{7}{3}\)
\(\Rightarrow x=\dfrac{7}{3}:7\)
\(\Rightarrow x=\dfrac{1}{3}\)
#Toru
a: 3/7-x=1/2x-3
=>-3/2x=-3+3/7
=>-1/2x=-1+1/7=-6/7
=>1/2x=6/7
=>x=6/7*2=12/7
b: =>5x+2x=5/3+2/3
=>7x=7/3
=>x=1/3
\(a,\Rightarrow2x=x+1\Rightarrow x=1\\ b,\Rightarrow3^{x+2}=\left(3^2\right)^3=3^6\\ \Rightarrow x+2=6\Rightarrow x=4\)