giúp mình với: cho m,n là số nguyên dương.với m>2, Cmr (2^n) +1 không chia hết (2^m)-1.thask
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P là số nguyên tố
mà p > 2
=> p lẻ
Có : p2 - 1 = (p - 1).(p + 1)
Với p lẻ
=> p - 1 và p + 1 là 2 số chẵn
=> (p - 1)(p + 1) \(⋮\) 2.4 = 8
(trong 2 số chẵn liên tiếp luôn tồn tại số chia hết cho 2 và 4)
=> p2 - 1 \(⋮\) 8
Bài 1:
\(^{n^2+15}\)là số chính phương nên đặt \(n^2+15=a^2\left(a\in N\right)\)
\(\Rightarrow n^2-a^2=-15\Rightarrow n^2-an+an-a^2=-15\Rightarrow\left(n^2-an\right)+\left(an-a^2\right)=-15\)
\(\Rightarrow n\left(n-a\right)+a\left(n-a\right)=-15\Rightarrow\left(n+a\right)\left(n-a\right)=-15\)
Vì \(a,n\in N\Rightarrow n-a\le n+a\)
Xét các trường hợp, bài toán đưa về dạng tổng-hiệu:
TH1:\(\hept{\begin{cases}n-a=-1\\n+a=15\end{cases}\Rightarrow\left(n,a\right)=\left(8,7\right)}\Rightarrow n=8\)
TH2:\(\hept{\begin{cases}n-a=-3\\n+a=5\end{cases}\Rightarrow n=1}\)
TH3:\(\hept{\begin{cases}n-a=-5\\n+a=3\end{cases}\Rightarrow n=-1\notin N\Rightarrow}\)loại
TH4\(\hept{\begin{cases}n-a=-15\\n+a=1\end{cases}\Rightarrow n=-7\notin N\Rightarrow}\)loại
2 bài còn lại dễ ,bạn tự làm nhé
Xét 3 số n^2-1,n^2,n^2+1 là 3 số liên tiếp => 1 trong 3 số sẽ chia hết cho 3.
Vì n không chia hết cho 3 =>n^2 không chia hết cho 3 => 1 trong 2 số n^2-1 và n^2+1 sẽ chia hết cho 3.
Từ đó => số nào chia hết cho 3 thì số đó là hợp số.Còn số còn lại sẽ là số nguyên tố.
Vậy n^2-1 và n^2+1 không đồng thời là số nguyên tố.
gọi n là 1 trong 2 dạng 3k+1 ,3k+2
sau đó thay vào n là chứng minh được