Cho xyz=1
Chứng minh rằng : \(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=1\)
cần gấp ạ cảm ơn mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{1}{x+y+z}+\frac{1}{3xyz}\ge2\sqrt{\frac{1}{3xyz\left(x+y+z\right)}}\ge2\sqrt{\frac{1}{\left(xy+yz+zx\right)^2}}=\frac{2}{xy+yz+zx}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
ta có :
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{xyz}{1+yz+y}\)
\(\frac{yz+y+xyz}{y+1+yz}\)
\(\frac{yz+y+1}{yz+y+1}\)
=1
\(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\)
\(=\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}+\frac{xyz}{xz\left(1+y+yz\right)}\)
\(=\frac{yz}{1+y+yz}+\frac{1}{1+y+yz}+\frac{y}{1+y+yz}\)
\(=\frac{1+y+yz}{1+y+yz}\)
\(=1\)