K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

Can them dieu kien a;b;c>0 nhe

Theo BDT Cauchy-Schwarz ta co

\(\left(a+b+c\right)\left(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

Dau "=" xay ra khi \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

16 tháng 1 2019

a+b+c)(x2a+y2b+z2c)(x+y+z)2(a+b+c)(x2a+y2b+z2c)≥(x+y+z)2

x2a+y2b+z2c(x+y+z)2a+b+c⇔x2a+y2b+z2c≥(x+y+z)2a+b+c

Dấu "=" xay ra khi x2a2=y2b2=z2c2xa=yb=zc

30 tháng 4 2020

bạn làm được câu 1 chưa ạ chụp cho mình

31 tháng 12 2018

Sao đang x ; y ; z -> a ; b ; c ?

1 tháng 1 2019

a,b,c la x,y,z danh nham

9 tháng 8 2016

1) Từ \(-2\le a,b,c\le3\) suy ra : 

\(\left(a+2\right)\left(a-3\right)\le0\Leftrightarrow a^2-a-6\le0\Leftrightarrow a^2\le a+6\)

\(\left(b+2\right)\left(b-3\right)\le0\Leftrightarrow b^2-b-6\le0\Leftrightarrow b^2\le b+6\)

\(\left(c+2\right)\left(c-3\right)\le0\Leftrightarrow c^2-c-6\le0\Leftrightarrow c^2\le c+6\)

Cộng các bđt trên theo vế ta có đpcm

2) \(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\)

Từ giả thiết : \(x+1=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}=2\sqrt{\left(x+z\right)\left(x+y\right)}\)

Tương tự : \(y+1\ge2\sqrt{\left(y+x\right)\left(y+z\right)}\) , \(z+1\ge2\sqrt{\left(z+y\right)\left(z+x\right)}\)

\(\Rightarrow\frac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{xyz}\ge\frac{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{8.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{64xyz}{xyz}=64\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y+z=1\\x+y=y+z=z+x\end{cases}\Leftrightarrow}x=y=z=\frac{1}{3}\)

Vậy Min P = 64 tại x = y = z = 1/3

18 tháng 4 2017

\(1+1=2\)

Nên phép tính kia > 0

Đúng 100%

Đúng 100%

Đúng 100%

18 tháng 4 2017

bạn giúp mình thì giúp bạn nhé!!!!

19 tháng 5 2017

Câu a.

Ta luôn có 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)  (do a+b < a+b+c)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo từng vế rồi rút gọn ta đươc đpcm

19 tháng 5 2017

Cảm ơn b nhé. B biết làm.câu b c d không giúp m với