K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

( a+b ) * 5 = ab 

 a  * 5 + b * 5 = a*10 + b * 1 

b*5 - b* 1 = a* 10 - a* 5 

b * ( 5-1) = a* ( 10 -5 )

b*4 = a*5 

b:a = 5:4 

b:a= \(\frac{5}{4}\)

\(\Rightarrow b=5;a=4\)

10 tháng 5 2016

Goi quang duong AB la x(km) (x>0)

Thời gian đi từ A đến B là: x/40 (h)

Thoi gian di tu B ve A la: x/30 (h)

Vì thời gian đi và về mất 7 tiếng nên ta có phương trình:x/40+x/30= 7

Xong ruì đó bạn chỉ cần giải phương trình ra là ok va ket qua la: 120 km

Gọi thời gian đi là x ( x > 0; đơn vị : h )

Thời gian về là 7 - x ( h )

quãng đường AB dài :

    40.x = 30.(7-x)

   40.x = 210 - 30.x

   70.x = 210

   Vậy x = 3 (h) 

Quãng đường AB dài 3.40 = 120 ( km)

                             Đáp số : 120 km

12 tháng 4 2017

120km k cho minh nha

17 tháng 9 2020

Gọi số cần tìm là ab

Số chia 5 dư 3 thì chữ số tận cùng là 3 hoặc 8

Số chia 2 dư 1 thì chữ số tận cùng là các số lẻ

=> Số chia 5 dư 3 và chia 2 dư 1 có chữ số tận cùng là 3

=> ab = a3 chia hết cho 9 => a+3 chia hết cho 9 => a=6

Vậy số cần tìm là 63

17 tháng 9 2020

Gọi số cần tìm là a 

Ta có : a : 5 dư 3

=> a - 3 \(⋮\) 5(đk : a > 2)

Lại có a : 2 dư 1

=> a - 3 \(⋮\)2  (đk : a > 3)

=> a - 3 : 9 dư 6

Vì a - 3  \(⋮\)5 và a - 3  \(⋮\)2

=> a - 3 \(\in\)BC(5 ; 2) 

mà a nhỏ nhất => a - 3 nhỏ nhất 

=> a - 3 = BCNN(5 ; 2)

Lại có \(BC\left(5;2\right)=B\left(10\right)\)

=> a - 3 \(\in\left\{0;10;20;30;40;50;60;...\right\}\)

=> \(a\in\left\{3;13;23;33;43;53;63;...\right\}\)

mà a \(⋮\)9

=> a = 63 (Vì a nhỏ nhất)

Vậy số cần tìm là 63

17 tháng 3 2022

bạn bấm máy tính hoặc giải hệ:

\(\left\{{}\begin{matrix}27x+56y=11\\1,5x+y=0,4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}27x+56y=11\\84x+56y=22,4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}57x=11,4\\27x+56y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0,2\\27.0,2+56y=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0,2\\y=0,1\end{matrix}\right.\)

17 tháng 3 2022

bấm hệ của 1 và 2

10 tháng 4 2018

Cách khác dễ hiểu hơn

Áp dụng BĐT Cô si 2 số ko âm 

Ta có: \(\frac{a^3}{b}+ab\ge2\sqrt{a^4}=2a^2\)

Tương tự rồi sau đó lại có:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)

10 tháng 4 2018

Áp dụng BĐT Cô si với 3 số k âm 

\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge\frac{3\sqrt[3]{a^3.a^3.b^2}}{b^2}=3a^2\)

\(\frac{b^3}{c}+\frac{b^3}{c}+b^2\ge3b^2\)

\(\frac{c^3}{a}+\frac{c^3}{a}+c^2\ge3c^2\)

\(\Rightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)