giúp mình\(3^{-1}.3^x+5.3^{x-1}=162\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{x-1}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}\left(5+1\right)=162\)
\(\Rightarrow3^{x-1}.6=162\)
\(\Rightarrow3^{x-1}=27\)
\(\Rightarrow3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
\(3^{x-1}+5.3^{x-1}=162\Rightarrow3^{x-1}\left(1+5\right)=162\Rightarrow3^{x-1}.6=162\)
\(\Rightarrow3^{x-1}=162:6\Rightarrow3^{x-1}=27\Rightarrow x-1=3\Rightarrow x=4\)
`#3107`
b)
`2.3^x = 162`
`\Rightarrow 3^x = 162 \div 2`
`\Rightarrow 3^x = 81`
`\Rightarrow 3^x = 3^4`
`\Rightarrow x = 4`
Vậy, `x = 4`
c)
`(2x - 15)^5 = (2 - 15)^3`
\(\Rightarrow \)`(2x - 15)^5 - (2x - 15)^3 = 0`
\(\Rightarrow \)`(2x - 15)^3 . [ (2x - 15)^2 - 1] = 0`
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=15\\\left(2x-15\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x-15=1\\2x-15=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x=16\\2x=-14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=-7\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-7;8;\dfrac{15}{2}\right\}.\)
`d)`
\(3^{x+2}-5.3^x=?\) Bạn ghi tiếp đề nhé!
`e)`
\(7\cdot4^{x-1}+4^{x-1}=23?\)
\(4^{x-1}\cdot\left(7+1\right)=23\\ \Rightarrow4^{x-1}\cdot8=23\\ \Rightarrow4^{x-1}=\dfrac{23}{8}\)
Bạn xem lại đề!
`f)`
\(2\cdot2^{2x}+4^3\cdot4^x=1056\)
\(\Rightarrow2\cdot2^{2x}+\left(2^2\right)^3\cdot\left(2^2\right)^x=1056\\ \Rightarrow2\cdot2^{2x}+2^6\cdot2^{2x}=1056\\ \Rightarrow2^{2x}\cdot\left(2+2^6\right)=1056\\ \Rightarrow2^{2x}\cdot66=1056\\ \Rightarrow2^{2x}=1056\div66\\ \Rightarrow2^{2x}=16\\ \Rightarrow2^{2x}=2^4\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
Vậy, `x = 2`
_____
\(10 -{[(x \div 3+17) \div 10+3.2^4] \div 10}=5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=10-5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=5\)
\(\Rightarrow\left(x\div3+17\right)\div10+48=50\)
\(\Rightarrow\left(x\div3+17\right)\div10=2\)
\(\Rightarrow x\div3+17=20\)
\(\Rightarrow x\div3=3\\ \Rightarrow x=9\)
Vậy, `x = 9.`
3^x-1+5.3^x-1=162
3^x-1.(1+5)=162
3^x-1.6=162
3^x-1=162:6
3^x-1=27
3^x-1=3^3
x-1=3
x=3+1
x=4
Mình ko viết lại đầu bài nhé!
=> 3^x-1. (1+5) = 162
=>3^ x-1 . 6 = 162
=>3^x-1 =27
=>3^x-1 = 3^3
=>x-1 =3
=>x = 4
Vậy x=4
3^x-1.(1+5)=162
=>3^x-1=162:6
=>3^x-1=27=3^3
=>x-1=3
=>x=4
vậy x=4 nhé!
bài này dễ woa
3^x-1 + 5.3^x-1 = 162
3^x-1. (1+5) = 162
3^x-1 =27
3^x-1 = 3^3
x-1 =3
x = 4
Vậy x=4
\(3^{-1}.3^x+5.3^{x-1}=162\)
=> \(\frac{1}{3}.3^x+5.3^x:3=162\)
=> \(\left(\frac{1}{3}+\frac{5}{3}\right).3^x=162\)
=> 2 . 3x = 162
=> 3x = 162 : 2
=> 3x = 81
=> 3x = 34
=> x = 4
Vậy ...
\(3^{-1}.3^x+5.3^{x-1}=162\)
\(\Rightarrow3^{-1+x}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}.\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}.6=162\)
\(\Rightarrow3^{x-1}=162:6=27=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
Vậy x = 4