Tìm nghiệm (3x-1)(4x+3)/2=(1-3x)(2x-5)/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(3x-1\right)\left(4x+3\right)}{2}=\left(1-3x\right)\left(2x-5\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(4x+3\right)=\left(1-3x\right)\left(2x-5\right).2\)
\(\Leftrightarrow12x^2+5x-3=12x^2+3x-10\)
\(\Leftrightarrow12x^2+5x+7=-12x^2+34x\)
\(\Leftrightarrow12x^2+5x+7=-12x^2+34x-34x\)
\(\Leftrightarrow12x^2-29x+7=-12x\)
\(\Leftrightarrow12x^2-29x+7=-12x+12x\)
\(\Leftrightarrow24x^2-29x+7=0\)
\(\Rightarrow\hept{\begin{cases}x=\frac{7}{8}\\x=\frac{1}{3}\end{cases}}\)
Trình độ hơi thấp, có gì sai sót mong bạn bỏ qua
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)
\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
\(\dfrac{\left(3x-1\right)\left(4x+3\right)}{2}=\dfrac{\left(1-3x\right)\left(2x-5\right)}{6}\)
\(\Leftrightarrow3\left(3x-1\right)\left(4x+3\right)-\left(1-3x\right)\left(2x-5\right)=0\)
\(\Leftrightarrow3\left(3x-1\right)\left(4x+3\right)+\left(3x-1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(12x+9+2x-5\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(14x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\14x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{-2}{7}\end{matrix}\right.\)
Vậy, \(S=\left\{\dfrac{1}{3};\dfrac{-2}{7}\right\}\)