K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2019

\(A=\frac{1-x^2}{x}.\left(\frac{x^2}{x+3}-1\right)+\frac{3x^2-14x+3}{x^2+3x}\)

\(A=\frac{\left(x^2-x-3\right)\left(-x^2+1\right)}{x\left(x+3\right)}+\frac{3x^2-14x+3}{x^2+3x}\)

\(A=\frac{\left(x^2-x-3\right)\left(1-x^3\right)}{\left(x+3\right)x}+\frac{3x^2-14x+3}{x\left(x+3\right)}\)

\(A=\frac{\left(x^2-x-3\right)\left(1-x^2\right)+3x^2-14x+3}{\left(x+3\right)x}\)

\(A=\frac{-x^4+x^3+7x^2-15x}{x\left(x+3\right)}\)

\(A=\frac{x\left(-x^3+x^2+7x-15\right)}{x\left(x+3\right)}\)

\(A=\frac{-x^3+x^2+7x-15}{x+3}\)

\(A=-\frac{\left(x+3\right)\left(x^2-4x+5\right)}{x+3}\)

\(A=-\left(x^2-4x+5\right)\)

\(A=-x^2+4x-5\)

Trình độ hơi thấp, có gì sai sót xin bỏ qua cho :)

12 tháng 1 2019

umk cảm ơn bạn trước nhé

12 tháng 1 2019

a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)

\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)

\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)

\(A=\frac{2x+1-3x-1+x^2}{3x}\)

\(A=\frac{x^2-x}{3x}\)

\(A=\frac{x\left(x-1\right)}{3x}\)

\(A=\frac{x-1}{3}\)

b) Thay x = 4 ta có :

\(A=\frac{4-1}{3}=\frac{3}{3}=1\)

c) Để A thuộc Z thì \(x-1⋮3\)

\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)

\(\Rightarrow x\in\left\{1;4;7;...\right\}\)

Vậy.....

27 tháng 2 2020

Cho Bt 

a,Tìm điều kiện xác định và rút gọn bt A

b,Tính giá trị bt A tại x=4

c,tìm x thuộc Z để a thuộc Z

20 tháng 10 2021

a) Điều kiện: \(x\ne\left\{0;\pm2\right\}\)

\(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=[\frac{x^2}{x.\left(x-2\right).\left(x+2\right)}-\frac{6}{3.\left(x-2\right)}+\frac{1}{x+2}]:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{x-2.\left(x+2\right)+x-2}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)

\(=\frac{6}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)

\(=-\frac{1}{x-2}\)

b) \(A\) \(Max\)

\(\Rightarrow-\frac{1}{x-2}Max\)

\(\Rightarrow\frac{1}{x-2}Min\)

\(\Rightarrow\left(x-2\right)\) \(Max\)

\(\Rightarrow x\) \(Max\)

\(\Rightarrow x\in\varnothing\)

2 tháng 8 2016

đề sai k bạn

2 tháng 8 2016

không bạn ạ

16 tháng 1 2021

a, ĐKXĐ : \(\hept{\begin{cases}2-x\ne0\\x^2-4\ne0\\2+x\ne0\end{cases}}\)hoặc \(2x^2-x^3\ne0\)hay \(x\ne\pm2;0\)

\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

\(=\left(-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)

\(=\frac{-x^2-2x-1-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}:\frac{x-3}{x\left(2-x\right)}\)

\(=\frac{-4x^2-6x+3}{\left(x-2\right)\left(x+2\right)}.\frac{-x\left(x-2\right)}{x-3}=\frac{\left(-4x^2-6x+3\right)\left(-x\right)}{\left(x+2\right)\left(x-3\right)}=\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}\)

16 tháng 1 2021

b, Ta có : A > 0 hay \(\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}>0\)

\(\Leftrightarrow x\left(4x^2+6x-3\right)>0\)

\(\Leftrightarrow4x^2+6x-3>0\) bạn xem lại bài mình có chỗ nào sai ko nhé !!! 

c, Ta có : \(\left|x-7\right|=4\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)

TH1 : Thay x = 11 vào phân thức trên : ... 

TH2 : Thay x = 3 vào phân thức trên : .... tự làm