K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

Ghhg fhgcgh

\(A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}\)

\(=1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}\)

\(=1+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{n\left(n+1\right)}\)

\(=1+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(=2-\dfrac{2}{n+1}\) ko là số tự nhiên

21 tháng 10 2015

1)

Ta có: a+a+2=2a+2=2.(a+1)

Vì a là số nguyên tố lớn hơn 3

=>a là số lẻ

=>a+1 là số chẵn

=>a+1 chia hết cho 2

=>2.(a+1) chia hết cho 4

=>a+a+2 chia hết cho 4(1)

Lại có:

Vì a là số nguyên tố lớn hơn 3

=>a có 2 dạng 3k+1 và 3k+2

*Xét a=3k+1=>a+2=3k+1+2=3k+3=3.(k+1) là hợp số

=>Vô lí

*Xét a=3k+2=>a+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố

Khi đó: a+a+2=2a+2=2.(3k+2)+2=2.3k+4+2=3.2k+6=3.(2k+3) chia hết cho 3

=>a+a+2 chia hết cho 3(2)

Từ (1) và (2) ta thấy:

a+a+2 chia hết cho 4 và 3

mà (4,3)=1

=>a+a+2 chia hết cho 4.3

=>a+a+2 chia hết cho 12

Vậy tổng của n và n+2 chia hết cho 12