Giải bất phương trình: \(|x-3|+|x+1|< 8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 1 )( x + 2 ) > ( x - 1 )2 + 3
<=> x2 + x - 2 > x2 - 2x + 1 + 3
<=> x2 + x - x2 + 2x > 1 + 3 + 2
<=> 3x > 6 <=> x > 2
Vậy bpt có tập nghiệm { x | x > 2 }
x( 2x - 1 ) - 8 < ( 5 - 2x )( 1 - x )
<=> 2x2 - x - 8 < 2x2 - 7x + 5
<=> 2x2 - x - 2x2 + 7x < 5 + 8
<=> 6x < 13 <=> x < 13/6
Vậy bpt có tập nghiệm { x | x < 13/6 }
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(\frac{x-5}{3}< \frac{x-8}{4}\Rightarrow4.\left(x-5\right)< 3.\left(x-8\right)\Rightarrow4x-20< 3x-24\Rightarrow x< -4\)
a) \(\frac{x-5}{3}< \frac{x-8}{4}\)
<=> \(\frac{4\left(x-5\right)}{12}< \frac{3\left(x-8\right)}{12}\)
<=> \(4\left(x-5\right)< 3\left(x-8\right)\)
<=> \(4x-20< 3x-24\)
<=> \(4x-3x< 20-24\)
<=> \(x< -4\)
Vậy bất phương trình có tập nghiệm là { x l x < -4 }
b) \(\frac{x+3}{4}+1< x+\frac{x+2}{3} \)
<=> \(\frac{3\left(x+3\right)}{12}+\frac{12}{12}< \frac{12x}{12}+\frac{4\left(x+2\right)}{12}\)
<=> \(3\left(x+3\right)+12< 12x+4\left(x+2\right)\)
<=> \(3x+9+12< 12x+4x+8\)
<=> \(3x-12x-4x< 8-9-12\)
<=> \(-13x< -13\)
<=> \(x>1\)
Vậy bất phương trình có tập nghiệm là { x l x > 1 }
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
BPT <=> \(\frac{x-1}{x-3}-1< 0\) <=> \(\frac{2}{x-3}< 0\) <=> x-3 < 0 (vì 2>0)
<=> x<3
\(3x-1\le23\)
\(\Leftrightarrow3x-1+1\le23+1\)
\(\Leftrightarrow3x\le24\)
\(\Leftrightarrow x\le8\)
a,<=>3x<=24
<=>x<=8
Vậy ....
b, <=>4x-8>=9x-3-2x-1
<=>4x-9x+2x>=8-3-1
<=>-3x>=4
<=>x>=-4/3 Vậy ....
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
\(\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=\left(x^2+4x-5\right)\left(x^2+4x-21\right)\)
\(=\left(x^2+4x-13+8\right)\left(x^2+4x-13-8\right)=\left(x^2+4x-13\right)^2-8^2\)
Bất phương trình đã cho \(\Leftrightarrow\left(x^2+4x-13\right)^2-8^2<197\)
\(\Leftrightarrow\left(x^2+4x-13\right)^2<261\)
\(\Leftrightarrow\left|x^2+4x-13\right|<3\sqrt{29}\)
\(\Leftrightarrow-3\sqrt{29}<\)\(x^2+4x-13<\)\(3\sqrt{29}\)
+ \(x^2+4x-13>-3\sqrt{29}\)\(\Leftrightarrow x^2+4x-13+3\sqrt{29}>0\)
\(\Leftrightarrow x<-2-\sqrt{17-3\sqrt{29}}\approx-2,91\) hoặc \(x>-2+\sqrt{17-3\sqrt{29}}\approx-1,08\)
+\(x^2+4x-13<3\sqrt{29}\Leftrightarrow x^2+4x-13-3\sqrt{29}<0\)
\(\Leftrightarrow-2-\sqrt{17+3\sqrt{29}}\)\(<\)\(x<\)\(-2+\sqrt{17+3\sqrt{29}}\)
( \(-7,75<\)\(x<3,75\))
Vậy, tập nghiệm của bất phương trình là:
\(S=\left(-2-\sqrt{17+3\sqrt{29}};-2-\sqrt{17-3\sqrt{29}}\right)\)\(U\)\(\left(-2+\sqrt{17-3\sqrt{29}};-2+\sqrt{17+3\sqrt{29}}\right)\)
L.I.K.E mạnh nào :))