Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: 5x=4y+2x
\(\Leftrightarrow3x=4y\)
\(\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{4+3}=\dfrac{-56}{7}=-8\)
Do đó: x=-32; y=-24
Bài 1:
a: Ta có: 5x=4y+2x
\(\Leftrightarrow3x=4y\)
hay \(\dfrac{x}{4}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{4+3}=\dfrac{-56}{7}=-8\)
Do đó: x=-32; y=-24
\(a,=x^2+x+\dfrac{1}{4}\\ b,=4x^2+2x+\dfrac{1}{4}\\ c,=x^2-2+\dfrac{1}{x^2}\\ d,=4x^2+\dfrac{8}{3}x+\dfrac{4}{9}x^2\\ e,=a^2-1\\ f,=25x^4-4\)
\(a,\left(x+\dfrac{1}{2}\right)^2=x^2+x+\dfrac{1}{4}\)
\(b,\left(2x+\dfrac{1}{2}\right)^2=4x^2+2x+\dfrac{1}{4}\)
\(c,\left(x-\dfrac{1}{x}\right)^2=x^2-2+\dfrac{1}{x^2}\)
\(d,\left(\dfrac{2x+2}{3x}\right)^2=\dfrac{\left(2x+2\right)^2}{9x^2}=\dfrac{4x^2+8x+4}{9x^2}\)
\(e,\left(a-1\right).\left(a+1\right)=a^2-1\)
\(f,\left(5x^2-2\right).\left(5x^2+2\right)=25x^4-4\)
1) (a+2b+1)\(^2\)
=a\(^2\)+2a(2b+1)+(2b+1)2
=a2+4ab+2a+(2b)2+2.2b.1+12
=a2+4ab+2a+4b2+4b+1
2) (2a-b+3)2
=(2a)2 -2.2a(b-3)+(b-3)2
=4a2-4a(b-3)+b2-2b.3+32
=4a2-4ab+12a+b2 -6b+9
3) (2a-3b+1)2
=(2a)2-2.2a(3b-1)+(3b-1)2
=4a2-4a(3b-1)+(3b)2-2.3b.1+12
=4a2-4ab+4a+9b2-6b+1
1) \(\left(3x-2a\right)^3\)
\(=\left(3x\right)^3-3\left(3x\right)^2\cdot2a+3\cdot3x\cdot\left(2a\right)^2-\left(2a\right)^3\)
\(=27x^3-3\cdot9x^2\cdot2a+3\cdot3x\cdot4a^2-8a^3\)
\(=27x^3-54ax^2+36a^2x-8a^3\)
2) \(\left(\dfrac{x+y}{3}\right)^3\)
\(=\dfrac{\left(x+y\right)^3}{27}\)
\(=\dfrac{x^3+3x^2y+3xy^2+y^3}{27}\)
3) \(\left(3x+\dfrac{y}{3}\right)^3\)
\(=\dfrac{\left(3x+y\right)^3}{27}\)
\(=\dfrac{27x^3+27x^2y+9xy^2+y^3}{27}\)
\(\left(3a-1\right)^2=9a^2-6a+1\)
\(\left(a-2\right)^2=a^2-4a+4\)
\(\left(1-5a\right)^2=1-10a+25a^2\)
\(\left(3a-2b\right)^2=9a^2-12ab+4a^2\)
\(\left(4-3a\right)^2=16-24a+9a^2\)
\(\left(5a-4b\right)^2=25a^2-40ab+16b^2\)
\(\left(5a-3b\right)\left(5a+3b\right)=25a^2-9b^2\)
\(\left(3x+1\right)\left(3x-1\right)=9x^2-1\)
\(\left(5x^2-2\right)\left(5x^2+2\right)=25x^4-4\)
\(\left(2a+\dfrac{1}{2}\right)\left(2a-\dfrac{1}{2}\right)=4a^2-\dfrac{1}{4}\)
\(\left(3x^2-y\right)\left(3x^2+y\right)=9x^4-y^2\)
\(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)=\dfrac{1}{4}x^2-1\)
\(\left(\dfrac{3}{4}x+2\right)\left(\dfrac{3}{4}x-2\right)=\dfrac{9}{16}x^2-4\)
\(\left(5x-\dfrac{3}{2}\right)\left(5x+\dfrac{3}{2}\right)=25x^2-\dfrac{9}{4}\)
\(\left(2a^2-7\right)\left(2a^2+7\right)=4a^2-49\)
\(\left(-\frac{1}{3}ab^3-2a^3b\right)^3\)
\(=\left(-\frac{1}{3}ab^3\right)-3\left(-\frac{1}{3}ab^3\right)^2.2a^3b+3\left(-\frac{1}{3}ab^3\right)\left(2a^3b\right)^2-\left(2a^3b\right)^3\)
\(=-\frac{1}{27}a^3b^9+\frac{2}{3}a^5b^7-4a^7b^5-8a^9b^3\)