Cho tam giác ABC có AH vuông góc với BC và góc BAH = 2 lần góc C. Tia phân giác của góc B cắt AC tại E
a, Tia phân giác góc BAH cắt BE tại I. CMR : Tam giác AIE vuông cân
b, CMR HE là phân giác góc AHC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn cố gắng giải nhanh giùm mình nhé mình đang cần gấp lắm
Từ đề bài :
=>Có đường cao AH( gt ) => Góc AHB = 90 độ
Xét tam giác AHB vuông tại H có
Góc BAH + góc ABh = 90 độ( do góc ABH = 90 độ
=> góc BAI + góc ABI = 45 độ
Có I nằm giữa B và F => Góc AIF là góc ngoài của tam giác BIA
=> góc AIF= góc ABI+ góc IAB= 45 độ (1)
Có góc BAH = 2 (góc C)
=> góc IAH= góc C
Ta lại có : góc FBC + góc IAH =45 độ
=> góc FBC + góc C =45 độ
=> góc AFI= 45 độ ( là góc ngoài của tam giác FBC) (2)
Từ (1) và (2) => tam giác AIF cân tại A( 3 )
Xét tam giác AIF có góc AIF+ góc AFI + góc FAI = 180 độ
=> góc IAF =90 độ( 4 )
Từ ( 3 ) và ( 4 ) => tam giác AIF vuông cân tại A.
Có đường cao AH( gt ) => Góc AHB = 90 độ
Xét tam giác AHB vuông tại H có
Góc BAH + góc ABh = 90 độ( do góc ABH = 90 độ
=> góc BAI + góc ABI = 45 độ
Có I nằm giữa B và F => Góc AIF là góc ngoài của tam giác BIA
=> góc AIF= góc ABI+ góc IAB= 45 độ (1)
Có góc BAH = 2 (góc C)
=> góc IAH= góc C
Ta lại có : góc FBC + góc IAH =45 độ
=> góc FBC + góc C =45 độ
=> góc AFI= 45 độ ( là góc ngoài của tam giác FBC) (2)
Từ (1) và (2) => tam giác AIF cân tại A( 3 )
Xét tam giác AIF có góc AIF+ góc AFI + góc FAI = 180 độ
=> góc IAF =90 độ( 4 )
Từ ( 3 ) và ( 4 ) => tam giác AIF vuông cân tại A.
\(\Delta ABC\)có đường cao AH(gt) => Góc AHB = 90 độ
Xét tam giác AHB vuông tại H có
Góc BAH + góc ABh = 90 độ( do góc ABH = 90 độ
=> góc BAI + góc ABI = 45 độ
Có I nằm giữa B và F => Góc AIF là góc ngoài của tam giác BIA
=> góc AIF= góc ABI+ góc IAB= 45 độ (1)
Có góc BAH = 2 (góc C)
=> góc IAH= góc C
Ta lại có : góc FBC + góc IAH =45 độ
=> góc FBC + góc C =45 độ
=> góc AFI= 45 độ ( là góc ngoài của tam giác FBC) (2)
Từ (1) và (2) => tam giác AIF cân tại A(*)
Xét tam giác AIF có
góc AIF+ góc AFI + góc FAI=180 độ
=> góc IAF =90 độ(**)
Từ *) và (**) => tam giác AIFvuông cân tại A
https://olm.vn/hoi-dap/detail/5819899271.html
Lời giải
a có: AH vuông góc BC suy ra hình tam giác AHC vuông tại H, hình tam giác AHB vuông tại H
=> \widehat{C}+\widehat{HAC}=90^o ; \widehat{ABH}+\widehat{BAH}=90^o Có: AI là phân giác \widehat{BAH}nên \widehat{IAH}= \widehat{IAB}=\frac{1}{2}\widehat{BAH}=\widehat{C}
[ vì theo giả thiết có \widehat{BAH}=2\widehat{C}BAH=2C]
Suy ra \widehat{IAH}+\widehat{HAC}=90^o =>\widehat{IAC}=90^o hay \widehat{IAE}=90^o=>\Delta IAE=>ΔIAEvuông tại A [1]
Lại có \widehat{AIE}=\widehat{IAB}+\widehat{IBA}A[góc ngoài tại đỉnh I của \Delta ABIΔABI]
Mà BE là phân giác \widehat{ABH}\Rightarrow\widehat{IBA}=\frac{1}{2}\widehat{ABH}ABH
Suy ra: \widehat{AIE}=\frac{1}{2}\left[\widehat{BAH}+\widehat{ABH}\right]=\frac{1}{2}.90^o=45^oA[2]
Từ 1 và 2 suy ra \Delta AIE vuông cân tại A
Suy ra AE là phân giác ngoài của \Delta ABH tại A,BE là phân giác trong tại B của \Delta ABH
=> HE là phân giác ngoài tại H của \Delta BAH
=> HE là phân giác \widehat{AHC}
Vậy ta có điều phải chứng minh